Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-04T19:15:13.119Z Has data issue: false hasContentIssue false

Predation, herbivory, and kelp evolution

Published online by Cambridge University Press:  08 April 2016

James A. Estes
Affiliation:
U.S. Fish and Wildlife Service, Institute of Marine Sciences, University of California, Santa Cruz, California 95064
Peter D. Steinberg
Affiliation:
Department of Biological Sciences, University of Sydney, New South Wales, 2006, Australia

Abstract

We propose that the kelps (Laminariales) radiated in the North Pacific following the onset of late Cenozoic polar cooling. The evidence is that (1) extant kelps occur exclusively in cold-water habitats; (2) all but one of 27 kelp genera occur in the North Pacific, 19 of these exclusively; and (3) limpets and herbivorous marine mammals obligately associated with kelps or other stipitate brown algae appeared late in the Cenozoic, even though more generalized forms of both groups are much older. We propose, further, that sea otters and perhaps other groups of benthic-feeding predatory mammals, whose late Cenozoic distributions all were limited to the North Pacific, created an environment for the evolution of kelps in which the intensity of herbivory was unusually low. We hypothesize that this interaction created predictable differences among habitats in the intensity of herbivory on several spatial scales, with resulting trade-offs between anti-herbivore defenses and plant competitive abilities in their respective floras. Sea otters incur time and energy costs for diving, resulting in depth-related reductions to foraging efficiency and thus increased sizes and densities of herbivorous sea urchins. Thus, the deep-water flora is well defended, but competitively subordinate, compared with the shallow-water flora. Similarly, we argue that during the same period of earth history, predation had less of a limiting influence on herbivorous invertebrates in the temperate southwestern Pacific. We hypothesize that (1) consequent biogeographical differences in the intensity of herbivory may have selected the phenolic-rich brown algal flora in temperate Australia/New Zealand; and (2) tightly coevolved plant/herbivore interactions may explain why Australian and New Zealand herbivores are undeterred by phenolics and why other classes of secondary compounds in the Australian/New Zealand flora significantly deter herbivores.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Addicott, W. O. 1969. Tertiary climatic change in the marginal northeastern Pacific Ocean. Science 165:583586.Google Scholar
Addicott, W. O. 1970. Latitudinal gradients in Tertiary molluscan faunas of the Pacific coast. Palaeogeography, Palaeoclimatology, Palaeoecology 8:287312.Google Scholar
Anderson, R. J. and Velimirov, B. 1982. An experimental investigation of the palatability of kelp bed algae to the sea urchin Parechinus angulosus Leske. Marine Ecology, Pubblicazioni della Stazione Zoologica di Napoli 3:357373.Google Scholar
Andrew, N. L. and Choat, J. H. 1982. The influence of predation and conspecific adults on the abundance of juvenile Evechinus chloroticus (Echinoidea: Echinometridae). Oecologia 54:8087.Google Scholar
Arnold, D. C. 1976. Local denudation of the sublittoral fringe by the green sea urchin, Strongylocentrotus droebachiensis (O. F. Muller). Canadian Field Naturalist 90:186187.Google Scholar
Ayling, A. M. 1981. The role of biological disturbance in temperate subtidal encrusting communities. Ecology 62:830847.CrossRefGoogle Scholar
Bakus, G. J. 1969. Energetics and feeding in shallow marine waters. International Review of General and Experimental Zoology 4:275369.Google Scholar
Berta, A. and Morgan, G. S. 1986. A new sea otter (Carnivora: Mustelidae) from the Late Miocene and Early Pliocene (Hemphilian) of North America. Journal of Paleontology 59:809819.Google Scholar
Botton, M. L. 1984. Effects of Laughing Gull and shorebird predation on the intertidal fauna at Cape May, New Jersey. Estuarine, Coastal and Shelf Science 18:209220.Google Scholar
Brasier, M. D. 1975. An outline history of seagrass communities. Palaeontology 18:681702.Google Scholar
Breen, P. A., Carson, T. A., Foster, J. B., and Stewart, E. A. 1982. Changes in subtidal community structure associated with British Columbia sea otter transplants. Marine Ecology Progress Series 7:1320.Google Scholar
Breen, P. A. and Mann, K. H. 1976. Changing lobster abundance and the destruction of kelp beds by sea urchins. Marine Biology 34:137142.Google Scholar
Carlton, J. T. 1976. Marine plant limpets of the Northeastern Pacific: patterns of host utilization and comparative plant-limpet distributions. Western Society of Malacologists Annual Report 9:2225.Google Scholar
Castilla, J. C. 1981. La Nutria del mar de Chilena, especie en extinción. Creces 2:3134. (In Spanish)Google Scholar
Chihara, M. 1970. Common Seaweeds of Japan in Color. Hoikusha Publishing Company, Osaka. 173 pp. (In Japanese)Google Scholar
Choat, J. H. and Schiel, D. R. 1982. Patterns of distribution and abundance of large brown algae and invertebrate herbivores in subtidal regions of northern New Zealand. Journal of Experimental Marine Biology and Ecology 60:129162.Google Scholar
Christians, J. 1975a. Revision provisiore des mollusques marins recents de la famille des Acmaeidae et description de deux nouveax sous-genres: Simplacmaea nov. subgen. et Collisellacmaea nov. subgen. Informations de la Societe beige de Malacologie Ser 4:318. (In French)Google Scholar
Christians, J. 1975b. Revision proisoire des mollusques marins recents de la famille des Acmaeidae (seconde partie). Informations de la Societe beige de Malacologie Ser 4:91116. (In French)Google Scholar
Clark, D. L. 1971. Arctic ocean ice cover and its late Cenozic history. Geological Society of America Bulletin 82:33133324.Google Scholar
Clayton, M. N. 1984. Evolution of the Phaeophyta with particular reference to the Fucales. Progress in Phycological Research 3:1146.Google Scholar
Clements, K. D. 1985. Feeding in two New Zealand herbivorous fish, the butterfish Odax pullus and the marblefish Aplodactylus arctidens. Unpublished , .Google Scholar
Coley, P. D., Bryant, J. B., and Chapin, F. S. III. 1985. Resource availability and plant antiherbivore defense. Science 230:895899.Google Scholar
Cossmann, M. and Pissarro, G. 1910–1913. Monographic complete des Coquilles fossiles de l'Eocene des Environs de Paris. 65 plates. Paris.Google Scholar
Cowen, R. K. 1983. The effect of sheephead (Semicossyphus pulcher) predation on red sea urchin (Strongylocentrotus franciscanus) populations: an experimental analysis. Oecologia 58:249255.Google Scholar
Dawson, E. Y. 1966. Marine Botany. Holt, Rinehart, and Winston, Inc. 371 pp.Google Scholar
Dayton, P. K. 1972. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. Pp. 8196. In Parker, B. C., (ed.), Colloquium on Conservation Problems in Antarctica. Allen Press, Lawrence, Kansas.Google Scholar
Dayton, P. K. 1975. Experimental studies of algal canopy interactions in a sea otter-dominated community at Amchitka Island, Alaska. Fishery Bulletin 73:230237.Google Scholar
Dayton, P. K. 1985a. The structure and regulation of some South American kelp communities. Ecological Monographs 55:447468.CrossRefGoogle Scholar
Dayton, P. K. 1985b. Ecology of kelp communities. Annual Review of Ecology and Systematics 16:215245.Google Scholar
den Hartog, C. 1970. The Seagrasses of the World. North-Holland, Amsterdam. 275 pp.Google Scholar
Denno, R. F. and McClure, M. S., ed. 1983. Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York. 717 pp.Google Scholar
Domning, D. P. 1978. Sirenian evolution in the North Pacific Ocean. University of California Publications Geological Science 118:1176.Google Scholar
Druehl, L. D. 1969. The northeast Pacific rim distribution of the Laminariales. International Seaweed Symposium Proceedings 6:161170.Google Scholar
Druehl, L. D. 1970. The pattern of Laminariales distribution in the northeast Pacific. Phycologia 9:237247.Google Scholar
Duggins, D. O. 1980. Kelp beds and sea otters: an experimental approach. Ecology 61:447453.CrossRefGoogle Scholar
Duggins, D. O. 1983. Starfish predation and the creation of mosaic patterns in a kelp-dominated community. Ecology 64:16101619.CrossRefGoogle Scholar
Durham, J. W. 1950. Cenozoic marine climates of the Pacific coast. Geological Society of America Bulletin 61:12431264.CrossRefGoogle Scholar
Durham, J. W. and MacNeil, F. S. 1967. Cenozoic migrations of marine invertebrates through the Bering Strait region. Pp. 326349. In Hopkins, D. M. (ed.), The Bering Land Bridge. Stanford University Press, Stanford.Google Scholar
Estes, J. A., Jameson, R. J., and Johnson, A. M. 1981. Food selection and some foraging tactics of sea otters. Pp. 606641. In Chapman, J. A., and D. Pursley (eds.), Worldwide Furbearer Conference Proceedings 1. Worldwide Furbearer Conference, Inc.Google Scholar
Estes, J. A. and Palmisano, J. F. 1974. Sea otters: their role in structuring nearshore communities. Science 185:10581060.Google Scholar
Estes, J. A., Smith, N. S., and Palmisano, J. F. 1978. Sea otter predation and community organization in the western Aleutian Islands, Alaska. Ecology 59:822833.Google Scholar
Eva, A. N. 1980. Pre-Miocene seagrass communities in the Caribbean. Palaeontology 23:231236.Google Scholar
Falconer, H. 1868. Fauna antiqua sivalensis. XVII. On Enhydriodon (Amyxodon), a fossil genus allied to Lutra from the Tertiary strata of the Siwalik heirs. Falconer Paleontological Memoirs 1:331338.Google Scholar
Faulkner, D. J. 1984. Marine natural products: metabolites of marine algae and herbivorous marine molluscs. Natural Products Reports 1:251280.CrossRefGoogle Scholar
Feeny, P. P. 1976. Plant apparency and chemical defenses. Recent Advances in Phytochemistry 10:142.Google Scholar
Fletcher, G. L., Pepper, V. A., and Kean, J. C. 1974. A study of the biology of the Newfoundland sea urchin with emphasis on aspects important to the development of a fishery. Marine Science Research Laboratory Technical Report 11. Memorial University of Newfoundland, St. John's, Canada. 41 pp.Google Scholar
Fletcher, W. J. 1987. Interactions among subtidal Australian sea urchins, gastropods, and algae: effects of experimental removals. Ecological Monographs 57:89109.CrossRefGoogle Scholar
Fletcher, W. J. and Underwood, A. J. 1987. Interspecific competition among subtidal limpets: effect of substratum heterogeneity. Ecology 68:387400.Google Scholar
Flint, R. F. 1971. Glacial and Quarternary Geology. Wiley and Sons, New York. 892 pp.Google Scholar
Foster, M. S. and Schiel, D. R. 1985. The ecology of giant kelp forests in California: a community profile. United States Fish and Wildlife Service Biological Report 85(7.2). 152 pp.Google Scholar
Foster, M. S. and Schiel, D. R. 1988. Sea otters and kelp forests: keystone species or just another brick in the wall? Pp. 92115. In VanBlaricom, G. R., and Estes, J. A. (eds.), The Community Ecology of Sea Otters. Springer-Verlag, Berlin.Google Scholar
Frakes, L. A. 1979. Climates Throughout Geologic Time. Elsevier, New York. 310 pp.Google Scholar
Frank, P. W. 1982. Effects of winter feeding on limpets by black oystercatchers, Haematopus bachmani. Ecology 63:13521362.Google Scholar
Fricke, A. H. 1979. Kelp grazing by the common sea urchin Parechinus angulosus Leske around Cape Peninsula. South African Journal of Zoology 15:177185.CrossRefGoogle Scholar
Fritsch, F. E. 1965. The Structure and Reproduction of the Algae 2. Cambridge University Press, Cambridge. 939 pp.Google Scholar
Gaines, S. D. and Lubchenco, J. 1982. A unified approach to marine plant-herbivore interactions. II. Biogeography. Annual Review of Ecology and Systematics 13:111138.CrossRefGoogle Scholar
Geiselman, J. A. and McConnell, O. J. 1981. Polyphenols in brown algae Fucus vesiculosus and Ascophyllum nodosum: chemical defenses against the marine herbivorous snail, Littorina littorea. Journal of Chemical Ecology 7:11151133.Google Scholar
Glombitza, K. W. 1977. Highly hydroxylated phenols of the Phaeophyceae. Pp. 191204. In Faulkner, D. J., and Fenical, W. (eds.), Marine Natural Products Chemistry. Plenum Press, New York.Google Scholar
Gould, S. J. 1986. Evolution and the triumph of homology, or why history matters. American Scientist 74:6069.Google Scholar
Gregson, R. P., Dazlauskas, R., Murphy, P. T., and Wells, R. J. 1977. New metabolites from brown alga Cystophora turulosa. Australian Journal of Chemistry 30:25272532.Google Scholar
Harrold, C. 1982. Escape responses and prey availability in a kelp forest predator-prey system. American Naturalist 119:132135.Google Scholar
Harrold, C. and Pearse, J. S. In press. The ecological role of echinoderms in kelp forests. In Lawrence, J. M. (ed.), Echinoderm Studies 2. A. A. Balkema, Rotterdam.Google Scholar
Hartwick, E. B. 1981. Size gradients and shell polymorphism in limpets with consideration of the role of predation. The Veliger 23:254264.Google Scholar
Hay, M. E. 1981. Herbivory, algal distribution, and the maintenance of between-habitat diversity on a tropical fringing reef. American Naturalist 118:520540.Google Scholar
Hay, M. E. 1984a. Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical? Ecology 65:446454.Google Scholar
Hay, M. E. 1984b. Predictable spatial escapes from herbivory: how do these affect the evolution of herbivore resistance in tropical marine communities? Oecologia 64:396407.CrossRefGoogle ScholarPubMed
Hay, M. E., Colburn, T., and Downing, D. 1983. Spatial and temporal patterns in herbivory on a Caribbean fringing reef: the effects of plant distribution. Oecologia 58:299308.Google Scholar
Hay, M. E., Gustafuson, K., and Fenical, W. 1985. Chemical defenses against herbivory in coral reef seaweeds. P. 39. Annual Meeting of the Western Society of Naturalists (abstract).Google Scholar
Hendey, Q. B. 1978. Late Tertiary Mustelidae (Mammalia, Carnivora) from Langebaanweg, South Africa. Annuals of the South African Museum 76:329357.Google Scholar
Himmelman, J. H. 1980. The role of the green sea urchin, Strongylocentrotus droebachiensis, in the rocky subtidal region of Newfoundland. Pp. 92119. In Pringle, J. D., Sharp, G. J., and J. F. Caddy (eds.), Proceedings of the Workshop on the Relationship Between Sea Urchin Grazing and Commercial Plant/Animal Harvesting. Canadian Technical Report of Fisheries and Aquatic Sciences 954.Google Scholar
Himmelman, J. H. 1984. Urchin feeding and macroalgal distribution in Newfoundland, eastern Canada. Naturaliste Canadien (Quebec) 111:337348.Google Scholar
Hockey, P. A. R. and Branch, G. M. 1984. Oystercatchers and limpets: impacts and implications. A preliminary assessment. Ardea 72:199206.Google Scholar
Hooper, R. 1980. Observations on algal-grazer interactions in Newfoundland and Labrador. Pp. 120124. In Pringle, J. D., Sharp, G. J., and J. F. Caddy (eds.), Proceedings of the Workshop on the Relationship Between Sea Urchin Grazing and Commercial Plant/Animal Harvesting. Canadian Technical Report of Fisheries and Aquatic Sciences 954.Google Scholar
Hopkins, D. M. 1967. The Cenozoic history of Beringia—a synthesis. Pp. 451484. In Hopkins, D. M. (ed.), The Bering Land Bridge. Stanford University Press, Stanford.Google Scholar
Johnson, C. R. and Mann, K. H. 1986. The importance of plant defense abilities to the structure of seaweed communities: the kelp Laminaria longicruis de la Pylaie survives grazing by the snail Lacuna vincta (Montagu) at high population densities. Journal of Experimental Marine Biology and Ecology 97:231267.CrossRefGoogle Scholar
Kain, J. M. 1977. The biology of Laminaria hyperborea. X. The effect of depth on some populations. Marine Biological Association of the United Kingdom—Journal 57:587607.Google Scholar
Kain, J. M. 1979. A view of the genus Laminaria. Oceanography and Marine Biology Annual Review 17:101161.Google Scholar
Katayama, T. 1951. Tannins of seaweeds. Journal of the Chemical Society of Japan Industrial Chemistry Section 54:603604.Google Scholar
Kazlauskas, R., King, L., Murphy, P. T., Warren, R. G., and Wells, R. J. 1981. New metabolites from the brown algal genus Cystophora. Australian Journal of Chemistry 34: 439–47.Google Scholar
Kazlauskas, R., Mulder, J., Murphy, P. T., and Wells, R. J. 1980. New metabolites from the brown alga Caulocystis cephalornithos. Australian Journal of Chemistry 33:20972101.Google Scholar
Kenyon, K. W. 1969. The sea otter in the eastern Pacific Ocean. North American Fauna 68:1352.CrossRefGoogle Scholar
Kilmer, F. H. 1972. A new species of sea otter from the late Pleistocene of northwestern California. Southern California Academy of Sciences Bulletin 71:150157.Google Scholar
Kooyman, G. L., Castellini, M. A., and Davis, R. W. 1981. Physiology of diving in marine mammals. Annual Review of Physiology 43:343346.Google Scholar
Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W., and Sinnett, E. E. 1980. Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. Journal of Comparative Physiology 138:335356.Google Scholar
Lamb, I. M. and Zimmerman, M. H. 1964. Marine vegetation of Cape Ann, Essex County, Massachusetts. Rhodora 66:217254.Google Scholar
Larson, B. R., Vadas, R. L., and Keser, M. 1980. Feeding and nutritional ecology of the sea urchin Strongylocentrotus drobachiensis in Maine, USA. Marine Biology 59:4962.Google Scholar
Lawrence, J. M. 1975. On the relationship between marine plants and sea urchins. Oceanography and Marine Biology Annual Review 13:213286.Google Scholar
Leffler, S. R. 1964. Fossil mammals from the Elk River Formation, Cape Blanco, Oregon. Journal of Mammalogy 45:5361.Google Scholar
Lindberg, D. R. 1976. Marine plant limpets of the northern Pacific: Neogene phylogeny and zoogeography. Western Society of Malacologists Annual Report 9:2225.Google Scholar
Lindberg, D. R. 1982. Acmaeidae: Gastropoda, Mollusca. Boxwood Press, Pacific Grove, California. 122 pp.Google Scholar
Lindberg, D. R. 1983. Anatomy, systematics and evolution of brooding acmaeid limpets. Unpublished Doctoral Dissertation, University of California, Santa Cruz. 277 pp.Google Scholar
Lindberg, D. R. In press. The Patellogastropoda. Malacological Review.Google Scholar
Lindberg, D. R. and Hickman, C. S. 1986. A new anomalous giant limpet from the Oregon Eocene (Mollusca: Patellidae). Journal of Paleontology 60:661668.Google Scholar
Lowry, L. F. and Pearse, J. S. 1973. Abalones and sea urchins in an area inhabited by sea otters. Marine Biology 23:213219.Google Scholar
Lubchenco, J. 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. American Naturalist 112:2339.Google Scholar
Lubchenco, J. 1980. Algal zonation in the New England rocky intertidal community: an experimental analysis. Ecology 61:333344.Google Scholar
Lubchenco, J. and Gaines, S. D. 1981. A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annual Review of Ecology and Systematics 12:405437.CrossRefGoogle Scholar
Lumbert, S. H., Den hartog, C., Phillips, R. C., and Olsen, F. S. 1984. The occurrence of fossil seagrasses in the Avon Park Formation (late Middle Eocene), Levy County, Florida (U.S.A.). Aquatic Botany 20:121129.CrossRefGoogle Scholar
Luyendyk, B. P., Forsyth, D., and Phillips, J. D. 1972. Experimental approach to the paleocirculation of the oceanic surface waters. Geological Society of America Bulletin 83:26492664.Google Scholar
Mann, K. H. 1972. Ecological energetics of the seaweed zone in a marine bay on the Atlantic Coast of Canada. II. Productivity of the seaweeds. Marine Biology 14:199209.Google Scholar
Mann, K. H. 1973. Seaweeds: their productivity and strategy for growth. Science 182:975981.Google Scholar
Mann, K. H. 1977. Destruction of kelp-beds by sea urchins: a cyclical phenomenon or irreversible degradation? Helgolander Wissenschaftliche Meeresuntersuchungen 30:455467.Google Scholar
Marsh, C. P. 1986. Rocky intertidal community organization: the impact of avian predators on mussel recruitment. Ecology 67:771786.Google Scholar
Mayer, R. M. 1980. A study of the population ecology of three nearshore communities of the sea urchin Strongylocentrotus polyacanthus. Unpublished , . 112 pp.Google Scholar
McKey, D. 1979. Distribution of secondary compounds in plants. Pp. 56133. In Rosenthal, G. A., and Janzen, D. H. (eds.), Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
McLean, J. H. 1962. Sublittoral ecology of kelp beds of the open coast near Carmel, California. Biological Bulletin 122:95114.CrossRefGoogle Scholar
Miller, R. J. 1985. Seaweeds, sea urchins, and lobsters: a reappraisal. Canadian Journal of Fisheries and Aquatic Science 42:20612072.Google Scholar
Mitchell, E. 1966. Northeastern Pacific Pleistocene sea otters. Journal of the Fisheries Research Board of Canada 23:18971911.Google Scholar
Mitchell, E. D. Jr. and Repenning, C. A. 1963. The chronologic and geographic range of desmostylians. Los Angeles County Museum Contributions in Science 78:320.Google Scholar
Muntz, L., Ebling, F. J., and Kitching, J. A. 1965. The ecology of Lough Ine. XIV. Predatory activity of large crabs. Journal of Animal Ecology 34:315329.Google Scholar
Nelson, G. and Platnick, N. 1980. A vicariance approach to historical biogeography. Bioscience 30:339343.Google Scholar
Nelson, G. and Platnick, N. 1981. Systematics and Biogeography. Cladistics and Vicariance. Columbia University Press, New York. 567 pp.Google Scholar
Nelson, G. and Rosen, D. E., eds. 1981. Vicariance Biogeography: A Critique. Columbia University Press, New York. 593 pp.Google Scholar
Neushul, M. 1967. Studies of subtidal marine vegetation in western Washington. Ecology 48:8394.Google Scholar
Norris, J. N. and Fenical, W. 1982. Chemical defense in tropical marine algae. Pp. 417431. In Rutzler, K., and I. G. Macintyre (eds.), The Atlantic barrier reef ecosystem, Belize. I. Structure and communities. Smithsonian Contributions to the Marine Sciences 12. Smithsonian Institution Press, Washington, D.C.Google Scholar
Norton, T. A. 1978. Factors influencing the distribution of Saccorhiza polyschides in the region of Lough Ine. Marine Biological Association of the United Kingdom—Journal 58:527536.Google Scholar
O'Connor, R. J. and Brown, R. A. 1977. Prey depletion and foraging strategy in the oystercatcher Haematopus ostralegus. Oecologia 27:7592.Google Scholar
Ogden, J. C., Brown, R. A., and Salesky, N. 1973. Grazing by the echinoid Diadema antillarium Philippi: formation of halos around West Indian patch reefs. Science 182:715717.Google Scholar
Olson, S. L. 1985. The fossil record of birds. Pp. 79252. In Farner, D. S., King, J. R., and K. C. Parkes (eds.), Avian Biology 8. Academic Press, New York.Google Scholar
Paine, R. T. 1980. Food webs: linkage, interaction strength, and community infrastructure. Journal of Animal Ecology 49:667685.Google Scholar
Paine, R. T. and Vadas, R. L. 1969a. The effects of grazing by sea urchins, Strongylocentrotus spp., on benthic algal populations. Limnology and Oceanography 14:710719.Google Scholar
Paine, R. T. and Vadas, R. L. 1969b. Calorific values of benthic marine algae and their postulated relation to invertebrate food preference. Marine Biology 4:7986.Google Scholar
Palmer, A. R. 1979. Fish predation and the evolution of gastropod shell structure: experimental and geographic evidence. Evolution 33:697713.Google Scholar
Parker, B. C. and Dawson, E. Y. 1965. Non-calcareous marine algae from California Miocene deposits. Nova Hedwigia 10:273295.Google Scholar
Paul, V. J. and Fenical, W. 1983. Isolation of halimedatrial: chemical defense adaptation in the calcareous reef building alga Halimeda. Science 221:747749.Google Scholar
Paul, V. J. and Hay, M. E. 1986. Seaweed susceptibility to herbivory: chemical and morphological correlates. Marine Ecology Progress Series 33:255264.Google Scholar
Pearse, J. S., Clarke, M. E., Leighton, D. L., Mitchell, C. T., and North, W. J. 1970. Marine waste disposal and sea urchin ecology. Pp. 193. In North, W. J., (ed.), Kelp Habitat Improvement Project. California Institute of Technology, Pasadena, California.Google Scholar
Pilgrim, G. E. 1931. Catalogue of the Pontian Carnivora of Europe in the British Museum. British Museum (Natural History) Catalogue. 174 pp.Google Scholar
Powell, A. W. B. 1973. The patellid limpets of the world (Patellidae). Indo-Pacific Mollusca 3:75205.Google Scholar
Power, M. E. and Mathews, W. J. 1983. Algae-grazing minnows (Campostoma anomalum), piscivorous bass (Micropterus spp.) and the distribution of attached algae in a small prairie-margin stream. Oecologia 60:328332.Google Scholar
Pringle, J. D., Sharp, G. J., and Caddy, J. F. 1982. Interactions in kelp bed ecosystems in the northwest Atlantic: a review of a workshop. Pp. 108115. In Mercer, M. C., (ed.), Multispecies Approaches to Fisheries Management Advice. Canadian Special Publication of Fisheries and Aquatic Sciences 59.Google Scholar
Quast, J. C. 1968. Observations on the food of kelp bed fishes. Pp. 109142. In North, W. J., and C. L. Hubbs (eds.), Utilization of Kelp Bed Resources in Southern California. California Department of Fish and Game—Fish Bulletin 139.Google Scholar
Ragan, M. A. 1976. Physodes and the phenolic compounds of brown algae. Composition significance of physodes in vivo. Botanica Marina 19:145154.Google Scholar
Ragan, M. A. and Craigie, J. S. 1978. Phenolic compounds in brown and red algae. Pp. 157179. In Helleburst, J. A., and Craigie, J. S. (eds.), Handbook of Phycological Methods II. Cambridge University Press, Cambridge.Google Scholar
Ragan, M. A. and Glombitza, K. W. 1986. Phlorotannins, brown algal polyphenols. Progress in Phycological Research 4:129241.Google Scholar
Ravi, B. N., Murphy, P. T., Lidgard, R. O., Warren, R. G., and Wells, R. J. 1982. C13 terpenoid metabolites of the brown alga Cystophora moniliformis. Australian Journal of Chemistry 35:171182.Google Scholar
Repenning, C. A. 1976a. Enhydra and Enhydriodon from the Pacific coast of North America. U.S. Geological Survey Journal of Research 4:305315.Google Scholar
Repenning, C. A. 1976b. Adaptive evolution of the sea lions and walruses. Systematic Zoology 25:375390.Google Scholar
Repenning, C. A., Ray, C. E., and Grigorescu, D. 1979. Pinniped biogeography. Pp. 357369. In Gray, J., and Boucot, A. J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State University Press, Corvallis, Oregon.Google Scholar
Rhoades, D. F. 1979. Evolution of plant chemical defense against herbivores. Pp. 454. In Rosenthal, G. A., and Janzen, D. H. (eds.), Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
Rhoades, D. F. and Cates, R. G. 1976. Towards a general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry 10:168213.Google Scholar
Riedman, M. and Estes, J. A. 1988 Review of the history, distribution, and foraging ecology of sea otters. Pp. 421. In VanBlaricom, G. R., and Estes, J. A. (eds.), The Community Ecology of Sea Otters. Springer-Verlag, Berlin.Google Scholar
Rosenthal, G. A. and Janzen, D. H. eds. 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York. 718 pp.Google Scholar
Russell, B. C. 1970. Ecological relationships of rocky reef fishes of northeastern New Zealand. Unpublished , .Google Scholar
Savin, S. M., Douglas, R. G., and Stehli, F. G. 1975. Tertiary marine paleotemperatures. Geological Society of America Bulletin 86:14991510.Google Scholar
Schiel, D. R. 1982. Selective feeding by the echinoid, Evechinus chloroticus, and the removal of plants from subtidal alga stands in northern New Zealand. Oecologia 54:379388.Google Scholar
Schiel, D. R. and Foster, M. S. 1986. The structure of subtidal algal stands in temperate waters. Oceanography and Marine Biology Annual Review 24:265307.Google Scholar
Segawa, S. 1974. Coloured Illustrations of the Seaweeds of Japan. Hoikusha Publishing Company, Osaka. 175 pp.Google Scholar
Shitikov, A. M. and Lukin, V. I. 1971. Macrobenthos of the sublittoral of several islands of the greater Kurile chain as a food resource for the sea otter. Proceedings of the Pacific Research Institute of Fisheries and Oceanography (TINRO) 80:217226. (Translated from Russian by M. O. Pierson.)Google Scholar
Shizuo, T., Domning, D. P., and Saito, T. 1986. Dusisiren dewana, n. sp. (Mammalia: Sirenia), a new ancestor of Steller's sea cow from the Upper Miocene of Yamagata prefecture, northeastern Japan. Transactions and Proceedings of the Palaeontological Society of Japan 141:293321.Google Scholar
Sielfeld, W. K. 1983. Los mamiferos marinos de Chile. Edificiones de la Universidad de Chile, Santiago, Chile. 199 pp. (In Spanish)Google Scholar
Smith, A. 1984. Echinoid Palaeobiology. George Allen and Unwin, London. 190 pp.Google Scholar
Steinberg, P. D. 1984. Algal chemical defense against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. Science 223:405407.Google Scholar
Steinberg, P. D. 1985. Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecological Monographs 55:333349.CrossRefGoogle Scholar
Steinberg, P. D. In press. The effects of quantitative and qualitative variation in phenolic compounds on feeding in three species of marine invertebrate herbivores. Journal of Experimental Marine Biology and Ecology.Google Scholar
Steller, G. W. 1751. De bestiis marinis. Pp. 289398. Novi commentarii Academiae Scientarium Impialis Petropolitanae 2. St. Petersburg.Google Scholar
Steneck, R. S. 1983. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:4461.Google Scholar
Steneck, R. S. and Watling, L. 1982. Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Marine Biology 68:299319.Google Scholar
Stromer, E. 1931. Reste Susswasser und Land bewohnenden Wirbeltiere aus den Diamantenfeldern Klein-Namagualandes (Sudwestafrika). Pp. 1747. Bayerische Akademie der Wissenschaften, Sitzengbrichte, Matnmatischnaturwissenschaftlicne Klasse. (In German)Google Scholar
Swain, T. 1979. Phenolics in the environment. Recent Advances in Phytochemistry 12:617640.Google Scholar
Targett, N. M. and McConnell, O. J. 1982. Detection of secondary metabolites in marine macrophytes using the marsh periwinkle, Littorina irrorata Say, as an indicator organism. Journal of Chemical Ecology 8:115124.CrossRefGoogle ScholarPubMed
Targett, N. M., Targett, T. E., Vrolijk, N. H., and Ogden, J. C. 1986. Effects of macrophyte secondary metabolites on feeding preferences of the herbivorous parrotfish Sparisoma radians. Marine Biology 92:141148.Google Scholar
Taylor, P. R. and Hay, M. E. 1984. Functional morphology of intertidal seaweeds: adaptive significance of aggregate vs. solitary forms. Marine Ecology Progress Series 18:295302.Google Scholar
Trembley, C. and Chapman, A. R. O. 1980. The local occurrence of Agarum cribrosum in relation to the presence or absence of its competitors and predators. Proceedings of the Nova Scotia Institute of Science 30:165170.Google Scholar
U.S. Fish and Wildlife Service. 1987. Final Environmental Impact Statement: Proposed Translocation of Southern Sea Otters 2: 2-1-40.Google Scholar
Vadas, R. L. 1968. The ecology of Agarum and the kelp bed community. Unpublished Doctoral Dissertation. University of Washington, Seattle, Washington. 282 pp.Google Scholar
Vadas, R. L. 1977. Preferential feeding: an optimization strategy in sea urchins. Ecological Monographs 47:337371.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation: Patterns of Marine Life. Harvard University Press, Cambridge, Massachusetts. 332 pp.Google Scholar
Vermeij, G. J., Schindel, D. E., and Zipser, E. 1981. Predation through geological time: evidence from gastropod shell repair. Science 214:10241026.Google Scholar
Whitman, J. D., Hulbert, A. H., and Harris, L. G. 1982. Morphology of a sea urchin front (Strongylocentrotus droebachiensis) at the Isles of Shoales, New Hampshire. (Abstract.) P. 285. In Lawrence, J. M. (ed.), International Echinoderms Conference, Tampa Bay. A. A. Balkema, Rotterdam.Google Scholar
Widdowson, T. B. 1971. A taxonomic revision of the genus Alaria Greville. Syesis 4:1149.Google Scholar
Wiley, E. O. 1981. Phylogenetics, the Theory and Practice of Phylogenetic Systematics. Wiley-Interscience, New York. 439 pp.Google Scholar
Wolfe, J. A. and Poore, R. Z. 1982. Tertiary marine and nonmarine climatic trends. Pp. 154188. In Berger, W. and Crowell, J. C. (eds.), Climate and Earth History. National Academy Press, Washington, D.C.Google Scholar
Womersley, H. B. S. 1981. Biogeography of Australian marine macroalgae. Pp. 292307. In Clayton, M. N., and King, R. J. (eds.), Marine Botany: an Austral-Asian Perspective. Longman, Areshire.Google Scholar
Yamada, I. 1980. Benthic marine algal vegetation along the coasts of Hokkaido, with special reference to the vertical distribution. Journal of the Faculty of Science, Hokkaido University. Series V 12:1198.Google Scholar