Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T20:43:45.822Z Has data issue: false hasContentIssue false

Phenetic discrimination of biometric simpletons: paleobiological implications of morphospecies in the lingulide brachiopod Glottidia

Published online by Cambridge University Press:  08 February 2016

Michał Kowalewski
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818, Warsaw, Poland. E-mail: [email protected]
Eric Dyreson
Affiliation:
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
Jonathan D. Marcot
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona 85721
José A. Vargas
Affiliation:
Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, 2060, San Pedro, Costa Rica
Karl W. Flessa
Affiliation:
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
Diana P. Hallman
Affiliation:
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721

Abstract

The extreme morphological simplicity of lingulide brachiopod shells makes them particularly useful for investigating the species-level taxonomic resolution of the fossil record as well as the relationships between taxonomy, morphological complexity, and evolutionary rates. Lingulides have undergone little change in shell morphology and have had low taxonomic diversity since the Paleozoic. Is this pattern an evolutionary phenomenon or an artifact of the shell's simplicity? Multivariate methods were used to establish morphogroups among seven populations of four extant species of Glottidia. Six characters (three shell dimensions and three internal septa) were measured for 162 specimens from field and museum collections. All populations follow similar allometric trajectories: internal septa display positive allometry and shell dimensions display negative allometry. The allometric pattern may reflect D'Arcy Thompson's Principle of Similitude. Principal component analysis does not reveal any distinct clusters in Glottidia morphospace but suggests that some differences independent from ontogeny exist among the populations. Size-free canonical variate analysis indicates the presence of five size-invariant groups that are statistically distinct. Bootstrap-corrected error rates indicate that four specimens are enough to classify a sample correctly at α = 0.05 and eight specimens at α = 0.01. The groups are consistent with neontological classification with the exception of two populations of G. pyramidata identified by discriminant analysis as two distinct groups. The size-free morphogroups reflect geographic separation rather than ontogenetic or substrate differences among the populations.

Despite the morphological simplicity of the shell, size-free multivariate analysis of Glottidia delineates groups that offer taxonomic resolution comparable with the neontological classification. The method offers a promising tool for identifying natural morphogroups on the basis of few morphological characters. Moreover, the agreement between neontological taxonomy and the morphogroups suggests that the size-free approach can be applicable for evaluating the reality of the low diversity and turnover rates observed in the fossil record of lingulide brachiopods (= Family Lingulidae). Assuming that the neontological species of Glottidia are biologically meaningful, this study shows that morphological simplicity of lingulides does not necessarily result in taxonomic underresolution. Our analysis, as well as several previous case studies, suggests that taxonomic diversity and turnover rates do not have to be dependent on the morphological complexity of preservable parts. In many cases, when rigorous quantitative methods are employed, the differences in the rates of morphological evolution may be a real evolutionary phenomenon and not artifacts of morphological complexity.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Albrecht, G. H. 1980. Multivariate analysis and the study of form with special reference to canonical variate analysis. American Zoologist 20:679693.CrossRefGoogle Scholar
Ausich, W. I., and Meyer, D. L. 1994. Hybrid crinoids in the fossil record (Early Mississippian, Phylum Echinodermata). Paleobiology 20:362367.CrossRefGoogle Scholar
Baarli, B. G. 1986. A biometric re-evaluation of the Silurian brachiopod lineage Stricklandia lens/S. laevis. Palaeontology 29:862864.Google Scholar
Batten, J. A., and Kowalewski, M. 1995. Seasonal grown banding and predation scars in the shells of a recent lingulide brachiopod. Geological Society of America Abstracts with Programs 27:373.Google Scholar
Baumiller, T. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.CrossRefGoogle Scholar
Biernat, G., and Emig, C. C. 1993. Anatomical distinctions of the Mesozoic lingulide brachiopods. Acta Palaeontologica Polonica 38:120.Google Scholar
Bookstein, F. L. 1990. Introduction to methods for landmark data. Pp. 215226in Rohlf, and Bookstein, 1990.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Bookstein, F. L., Chernoff, B., Elder, R. L., Humphries, J. M. Jr., Smith, G. R., and Strauss, R. E. 1984. Morphometrics in evolutionary biology. The Academy of Natural Sciences Philadelphia Special Publication 15:1277.Google Scholar
Boyajian, G., and Lutz, T. 1992. Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea. Geology 20:983986.2.3.CO;2>CrossRefGoogle Scholar
Bryant, E. H., and Meffert, L. M. 1988. Effect of an experimental bottleneck on morphological integration in the housefly. Evolution 42:698707.CrossRefGoogle ScholarPubMed
Budd, A. F., and Coates, A. G. 1992. Nonprogressive evolution in a clade of Cretaceous Monastrea-like corals. Paleobiology 18:425446.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., and Potts, D. C. 1994. Recognizing morphospecies in colonial reef corals: I. Landmark-based methods. Paleobiology 20:484505.CrossRefGoogle Scholar
Burnaby, T. P. 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22:96110.CrossRefGoogle Scholar
Callomon, J. H. 1963. Sexual dimorphism in Jurassic ammonites. Transactions of the Leicester Society of Literature and Philosophy 57:2156.Google Scholar
Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Paleozoic echinoderms. Pp. 61100in Campbell, K. S. W., and Day, M. F., eds. Rates of evolution. Allen, London.Google Scholar
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphometric change within and across species boundaries. Paleobiology 12:190202.CrossRefGoogle Scholar
Cheetham, A. H. 1987. Tempo of evolution in a Neogene bryozoan: are trends in single morphological characters misleading? Paleobiology 13:286296.CrossRefGoogle Scholar
Cherns, L. 1979. The environmental significance of Lingula in the Ludlow series of the Welsh Borderland and Wales. Lethaia 12:3546.CrossRefGoogle Scholar
Chuang, S. H. 1961. Growth of the postlarval shell in Lingula unguis (L.) (Brachiopoda). Proceedings of the Zoological Society of London 137:299310.CrossRefGoogle Scholar
Chuang, S. H. 1964a. On Glottidia inexpectans Olsson. Journal of Paleontology 38:153155.Google Scholar
Chuang, S. H. 1964b. The affinity of Lingula dumortieri with Glottidia. Journal of Paleontology 38:155157.Google Scholar
Chuang, S. H. 1964c. Glottidia glauca n. sp. from the lower Claiborne of Texas. Journal of Paleontology 38:157159.Google Scholar
Clarkson, E. N. K. 1986. Invertebrate paleontology and evolution. Allen, London.Google Scholar
Cooper, G. A. 1988. Some Tertiary brachipods of the East Coast of the United States. Smithsonian Contributions to Paleobiology 64:129. Smithsonian Institution Press, Washington, D.C.Google Scholar
Culter, J. K., and Simon, J. L. 1987. Sex ratios and the occurrence of hermaphrodites in the inarticulate brachiopod, Glottidia pyramidata (Stimpson) in Tampa Bay, Florida. Bulletin of Marine Science 40:193197.Google Scholar
Dall, W. H. 1871. Supplement to the “revison of the Terebratulidae”, with additions corrections and a revison of the Craniidae and Discinidae. American Journal of Conchology 7:3979.Google Scholar
Dall, W. H. 1920. Annotated list of the Recent brachiopods in the collection of the United States National Museum, with description of thirty-three new forms. Proceedings of the United States National Museum 57:261377.CrossRefGoogle Scholar
Davidson, T. 1888. A monograph of Recent Brachiopoda. Transactions of the Linnean Society of London, Series 2. 4(1), Part 1:173, Part 2:75–182, Part 3:183–248.Google Scholar
Davison, A. C., and Hall, P. 1992. On the bias and variability of bootstrap and cross-validation estimates of error rate in discrimination problems. Biometrika 79:279284.CrossRefGoogle Scholar
Diaconis, P., and Efron, B. 1983. Computer-intensive methods in statistics. Scientific American 248:116130.CrossRefGoogle Scholar
Doyle, P. 1985. Sexual dimorphism in the belemnite Youngibelus from the Lower Jurassic of Yorkshire. Paleontology 28:133146.Google Scholar
Efron, B. 1979. Bootstrap methods: another look at the jack-knife. The Annals of Statistics 7:126.CrossRefGoogle Scholar
Efron, B. 1981. Nonparametric standard errors and confidence intervals. Canadian Journal of Statistics 9:139172.CrossRefGoogle Scholar
Emig, C. C. 1982. Taxonomie du genre Lingula (Brachiopodes, Inarticulés). Bulletin de Museum nationale d'Histoire naturalle 4(4), Section A(3/4):337367.CrossRefGoogle Scholar
Emig, C. C. 1983. Taxonomie du genre Glottidia (Brachiopodes, Inarticulés). Bulletin de Museum nationale d'Histoire naturalle 4(5), Section A(2):469489.CrossRefGoogle Scholar
Emig, C. C. 1990. Examples of post-mortality alteration in Recent brachiopod shells and (paleo)ecological consequences. Marine Biology 104:233238.CrossRefGoogle Scholar
Emig, C. C., and Vargas, J. A. 1990. Glottidia audebarti (Broderip), (Brachiopoda, Lingulidae) from the Gulf of Nicoya, Costa Rica. Revista de Biología Tropical 38:251258.Google Scholar
Emig, C. C., Gall, J. C., Pajand, D., and Plaziat, J. C. 1978. Réflexions critiques sur l'écologie et la systématique des lingules actuelles et fossiles. Geobios 11:573609.CrossRefGoogle Scholar
Ferguson, L. 1963. The paleoecology of Lingula squamiformis Philips during a Scottish Mississippian marine transgression. Journal of Paleontology 37:669681.Google Scholar
Figuerias, A., and Martinez, S. 1995. Nueva especie de Glottidia (Brachiopoda, Lingulidae) del Mioceno (Formación Camacho) de Uruguay. Ameghiniana 32:385390.Google Scholar
Foote, M. 1989. Perimeter-based Fourier analysis: a new morphometric method applied to the trilobite cranidium. Journal of Paleontology 63:880885.CrossRefGoogle Scholar
Foote, M. 1991. Analysis of morphological data. In Analytical paleobiology. Gilinsky, N. L., and Signor, P. W., eds. Short Courses in Paleontology 4:5986. Paleontological Society, Knoxville, Tenn.Google Scholar
Futuyma, D. J. 1986. Evolutionary biology. Sinauer, Sunderland, Mass.Google ScholarPubMed
Geary, D. H. 1990. Patterns of evolutionary tempo and mode in the radiation of Melanopsis (Gastropoda; Melanopsidae). Paleobiology 16:492511.CrossRefGoogle Scholar
Geary, D. H. 1992. An unusual pattern of divergence between two fossil gastropods: ecophenotypy, dimorphism, or hybridization? Paleobiology 18:93109.CrossRefGoogle Scholar
Goldman, D. 1995. Taxonomy, evolution, and biostratigraphy of the Orthograptus quadrimucronatus species group (Ordovician, Graptolithina). Journal of Paleontology 69:516539.CrossRefGoogle Scholar
Hageman, S. J. 1991. Approaches to systematics and evolutionary studies of perplexing groups: an example using fenestrate Bryozoa. Journal of Paleontology 65:630648.CrossRefGoogle Scholar
Hall, P. 1992. Efficient bootstrap simulations. Pp. 127143in LePage, R., and Billard, L. L., eds. Exploring the limits of bootstrap. Wiley, New York.Google Scholar
Hammond, L. S., and Kenchington, R. A. 1978. A biometric case for revision of the genus Lingula (Brachiopoda: Inarticulata) from Queensland, Australia. Journal of Zoology, London 184:5362.CrossRefGoogle Scholar
Hand, D. J. 1981. Discrimination and classification. Wiley, New York.Google Scholar
Hertlein, L. G., and Grant, U. S. IV. 1944. The Cenozoic Brachiopoda of western North America. University of California Los Angeles Publications in Mathematical and Physical Sciences 3:1236.Google Scholar
Hohenegger, J., and Tatzreiter, F. 1992. Morphometric methods in determination of ammonite species exemplified through Balatonites shells (Middle Triassic). Journal of Paleontology 66:801816.CrossRefGoogle Scholar
Holdener, E. J. 1994. Numerical taxonomy of fenestrate bryozoans: evaluation of methodologies and recognition of intraspecific variation. Journal of Paleontology 68:12011213.CrossRefGoogle Scholar
Hora, S. C., and Wilcox, J. B. 1982. Estimation of error rates in several-population discriminant analysis. Journal of Marketing Research 19:5761.CrossRefGoogle Scholar
Houck, M. A., Gauthier, J. A., and Strauss, R. E. 1990. Allometric scaling in the earliest fossil bird Archaeopteryx-Lithographica. Science 247:195198.CrossRefGoogle ScholarPubMed
Hulbert, R. C. Jr. 1988. Cormohipparion and Hipparion (Mammalia, Periossodactyla, Equide) from the late Neogene of Florida. Bulletin of the Florida State Museum of Biological Sciences 33:229338.Google Scholar
Humphries, J. H., Bookstein, F. L., Chernoff, B., Smith, G., Elder, R., and Poss, S. 1981. Multivariate discrimination by shape in relation to size. Systematic Zoology 30:291308.CrossRefGoogle Scholar
Hutcheson, H. J., Oliver, J. H. Jr., Houck, M. A., and Strauss, R. E. 1995. Multivariate morphometric discrimination of nymphal and adult forms of the blacklegged tick (Acari: Ixodidae): a principal vector of the agent of lyme disease in eastern North America. Journal of Medical Entomology 32:827842.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., and Cheetham, A. H. 1990. Evolutionary significance of morphospecies: a test with cheilostome Bryozoa. Science 248:579583.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., and Cheetham, A. H. 1994. Phylogeny reconstruction and the tempo of speciation in cheilostome Bryozoa. Paleobiology 20:407423.CrossRefGoogle Scholar
Jöckel, K. H., Rothe, G., and Sendler, W. 1992. Bootstrapping and related techniques. Lecture Notes in Economics and Mathematical System 376:1245. Springer, New York.Google Scholar
Jolicoeur, P. 1963a. The degree of generality of robustness in Martes americana. Growth 27:127.Google Scholar
Jolicoeur, P. 1963b. The multivariate generalization of the allometry equation. Biometrics 19:497499.CrossRefGoogle Scholar
Jones, G. F., and Barnard, J. L. 1963. The distribution and abundance of the inarticulate brachiopod Glottidia albida (Hinds) on the mainland shelf of southern California. Pacific Naturalist 4:2751.Google Scholar
Kidwell, S. M. 1986. Models for fossil concentration: paleobiologic implications. Paleobiology 12:624.CrossRefGoogle Scholar
Klapper, G., and Foster, C. T. Jr. 1986. Quantification of outlines in Frasnian (Upper Devonian) platform conodonts. Canadian Journal of Earth Sciences 23:12141222.CrossRefGoogle Scholar
Kowalewski, M. 1993. Morphometric analysis of predatory drillholes. Palaeogeography, Palaeoclimatology, Palaeoecology 102:6988.CrossRefGoogle Scholar
Kowalewski, M. 1996. Taphonomy of a living fossil: the lingulide brachiopod Glottidia palmeri Dall from Baja California, Mexico. Palaios 11:244265.CrossRefGoogle Scholar
Kowalewski, M., and Demko, T. M. 1996. Trace fossils and population paleoecology: comparative analysis of size-frequency distributions derived from burrows. Lethaia 29:113124.CrossRefGoogle Scholar
Kowalewski, M., and Flessa, K. W. 1994. A predatory drillhole in Glottidia palmeri Dall (Brachiopoda; Lingulidae) from Recent tidal flats of northeastern Baja California, Mexico. Journal of Paleontology 86:14031405.CrossRefGoogle Scholar
Kowalewski, M., and Flessa, K. W. 1996. Improving with age: the fossil record of lingulide brachiopods and the nature of the taphonomic megabias. Geology 24:977980.2.3.CO;2>CrossRefGoogle Scholar
Kowalewski, M., Flessa, K. W., and Aggen, J. A. 1994. Taphofacies analysis of Recent shelly cheniers (beach ridges), northeastern Baja California, Mexico. Facies 31:209242.CrossRefGoogle Scholar
Kowalewski, M., Marcot, J. D., Vargas, J. A., and Dyreson, E. 1996. Biometric boredom in the genus Glottidia (Brachiopoda): implications for the fossil record of lingulide diversity. In Repetski, J. E., ed. Proceedings of the Sixth North American Paleontological Convention. Paleontological Society Special Publication 8:219. [Abstract.]Google Scholar
LePage, R., and Billard, L. L. 1992. Exploring the limits of bootstrap. Wiley, New York.Google Scholar
Lessios, H. A. 1981. Divergence in allopatry: molecular and morphological differentiation between sea urchins separated by the Isthmus of Panama. Evolution 35:618634.CrossRefGoogle ScholarPubMed
Lohmann, G. P., and Schweitzer, P. N. 1990. On eigenshape analysis. Pp. 147166in Rohlf, and Bookstein, 1990.Google Scholar
Lowe, H. N. 1933. At the head of the Gulf of California. Nautilus 47:4547.Google Scholar
Makowski, H. 1963. Problems of sexual dimorphism in ammonites. Palaeontologica Polonica 12:192.Google Scholar
Mammen, E. E. 1992. When does bootstrap work?: asymptotic results and simulations. Lecture Notes in Statistics 77:1196. Springer, New York.Google Scholar
Manly, B. F. J. 1991. Randomization and Monte Carlo methods in biology. Chapman, London.CrossRefGoogle Scholar
Marcus, L. 1990. Traditional morphometrics. Pp. 77122in Rohlf, and Bookstein, 1990.Google Scholar
Matyja, B. A. 1986. Developmental polymorphism in Oxfordian ammonites. Acta Geologica Polonica 36:3768.Google Scholar
Michaux, B. 1989. Morphological variation of species through time. Biological Journal of the Linnean Society 38:239255.CrossRefGoogle Scholar
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388399.CrossRefGoogle Scholar
Olsson, A. 1914. New and interesting Neogene fossils from the Atlantic Coastal Plain. Bulletins of American Paleontology 5:4372.Google Scholar
Paine, R. T. 1963. Ecology of the brachiopod Glottidia pyramidata. Ecological Monographs 33:187213.CrossRefGoogle Scholar
Reis, S. F., Pessôa, L. M., and Strauss, R. E. 1990. Application of size-free canonical discriminant analysis to studies of geographic differentiation. Revista Brasiliana Genetica 13:509520.Google Scholar
Reyment, R. A. 1990. Reification of classical multivariate analysis in morphometry. Pp. 123144in Rohlf, and Bookstein, 1994.Google Scholar
Reyment, R. A., Blackith, R. E., and Campbell, N. A. 1984. Multivariate morphometrics. Academic Press, London, 225p.Google Scholar
Rohlf, F. J. 1990. Fitting curves to outlines. Pp. 167177in Rohlf, and Bookstein, 1990.Google Scholar
Rohlf, F. J., and Bookstein, F. L. 1987. A comment on shearing as a method of “size correction.” Systematic Zoology 36:356367.CrossRefGoogle Scholar
Rohlf, F. J., and Bookstein, F. L. 1990. Proceedings of the Michigan Morphometric Workshop. University of Michigan Museum of Zoology Special Publication 2. Ann Arbor.Google Scholar
Rudwick, M. J. S. 1970. Living and fossil brachiopods. Hutchison, London.Google Scholar
SAS Institute. 1989a. SAS/STAT® User's Guide, Version 6, 4th ed., Vols. 1, 2. SAS Institute, Cary, N.C.Google Scholar
SAS Institute. 1989b. SAS/IML Software, Version 6, 1st ed.SAS Institute, Cary, N. C.Google Scholar
Savazzi, E. 1986. Burrowing sculptures and life habits in Paleozoic lingulacean brachiopods. Paleobiology 12:4663.CrossRefGoogle Scholar
Schopf, T. J. M. 1981. Evidence from findings of molecular biology with regard to the rapidity of genomic change: implications for species durations. Pp. 135192in Niklas, K. J., ed. Paleobotany, Paleoecology and Evolution, Vol. 1. Praeger, New York.Google Scholar
Schopf, T. J. M. 1984. Rates of evolution and the notion of “living fossils.” Annual Reviews in Earth and Planetary Sciences 12:245292.CrossRefGoogle Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic vs. morphologic rates of evolution: influence of morphological complexity. Paleobiology 1:6370.CrossRefGoogle Scholar
Smith, A. B. 1994. Systematics and the fossil record. Blackwell Scientific, London.CrossRefGoogle Scholar
Stanley, S. M. 1970. Relation of shell form to life habits in the Bivalvia (Mollusca). Geological Society of America Memoir 125:1296.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: pattern and process. W. H. Freeman, San Francisco.Google Scholar
Stearn, C. W., and Carroll, R. L. 1989. Paleontology: the record of life: Wiley, New York.Google Scholar
Strauss, R. E. 1985. Evolutionary allometry and variation in body form in the South American catfish genus Corydoras (Callichthyidae). Systematic Zoology 34:381396.CrossRefGoogle Scholar
Strauss, R. E. 1990. Patterns of quantitative variation in lepidopteran wing morphology: the convergent groups Heliconiinae and Ithomiinae (Papilionoidea: Nymphalidae). Evolution 44:86103.CrossRefGoogle ScholarPubMed
Strauss, R. E. 1993. The study of allometry since Huxley. Pp. 4775in Huxley, J. S.Problems of relative growth. Johns Hopkins University Press, Baltimore.Google Scholar
Strauss, R. E., and Bookstein, F. L. 1982. The truss: body form reconstruction in morphometrics. Systematic Zoology 31:113135.CrossRefGoogle Scholar
Temple, J. T. 1992. The progress of quantitative methods in palaeontology. Palaeontology 35:475484.Google Scholar
Terry, L. I., and Dyreson, E. 1996. Behavior of Frankliniella occidentalis (Thysanoptera: Thripidae) within aggregations, and morphometric correlates of fighting. Annals of the Entomological Society of America 89:589602.CrossRefGoogle Scholar
Thompson, D. W. 1942. On growth and form. The complete revised edition (1992). Dover, New York.Google Scholar
Thompson, R. W. 1968. Tidal flat sedimentation on the Colorado River delta, northwestern Gulf of California. Geological Society of America Memoir 107:1133.CrossRefGoogle Scholar
Thomson, H. R. A., and Owen, E. F. 1979. Lower Cretaceous Brachiopoda from south-eastern Alexander Island. British Antarctic Survey Bulletin 48:1536.Google Scholar
Thorpe, J. P., Beardmore, J. A., and Ryland, J. S. 1979. Genetic evidence for cryptic speciation in the marine bryozoan Alcyonidium gelatinosum. Marine Biology 49:2732.CrossRefGoogle Scholar
Vargas, J. A. 1987. The benthic community of an intertidal mud flat in the Gulf of Nicoya, Costa Rica. Description of the community. Revista de Biología Tropical 35:299316.Google Scholar
Vargas, J. A. 1988. Community structure of macrobenthos and the result of macropredator exclusion on a tropical intertidal mud flat. Revista de Biología Tropical 36:287308.Google Scholar
Wake, D. B., Roth, G., and Wake, M. H. 1983. On the problem of stasis in organismal evolution. Journal of Theoretical Biology 101:211224.CrossRefGoogle Scholar
Williams, A. J. 1977. Insight into lingulid evolution from the Late Devonian. Alcheringa 1:401406.CrossRefGoogle Scholar
Woodruff, D. S., and Gould, S. J. 1987. Fifty years of interspecific hybrydization: genetics and morphometric of a controlled experiment on the land snail Cerion in the Florida Keys. Evolution 41:10221045.CrossRefGoogle Scholar