Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:29:51.943Z Has data issue: false hasContentIssue false

Phanerozoic trends in the global geographic disparity of marine biotas

Published online by Cambridge University Press:  08 April 2016

Arnold I. Miller
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221. E-mail: [email protected]
Devin P. Buick
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221. E-mail: [email protected]
Katherine V. Bulinski
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221. E-mail: [email protected]
Chad A. Ferguson
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221. E-mail: [email protected]
Austin J. W. Hendy
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221. E-mail: [email protected]
Martin Aberhan
Affiliation:
Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany
Wolfgang Kiessling
Affiliation:
Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany

Abstract

Previous analyses of the history of Phanerozoic marine biodiversity suggested that the post-Paleozoic increase observed at the family level and below was caused, in part, by an increase in global provinciality associated with the breakup of Pangea. Efforts to characterize the Phanerozoic history of provinciality, however, have been compromised by interval-to-interval variations in the methods and standards used by researchers to calibrate the number of provinces. With the development of comprehensive, occurrence-based data repositories such as the Paleobiology Database (PaleoDB), it is now possible to analyze directly the degree of global compositional disparity as a function of geographic distance (geo-disparity) and changes thereof throughout the history of marine animal life. Here, we present a protocol for assessing the Phanerozoic history of geo-disparity, and we apply it to stratigraphic bins arrayed throughout the Phanerozoic for which data were accessed from the PaleoDB. Our analyses provide no indication of a secular Phanerozoic increase in geo-disparity. Furthermore, fundamental characteristics of geo-disparity may have changed from era to era in concert with changes to marine venues, although these patterns will require further scrutiny in future investigations.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adrain, J. M., and Westrop, S. R. 2000. An empirical assessment of taxic paleobiology. Science 289:110112.CrossRefGoogle ScholarPubMed
Adrain, J. M., Westrop, S. R., Chatterton, B. D. E., and Ramsköld, L. 2000. Silurian trilobite alpha diversity and the end-Ordovician mass extinction. Paleobiology 26:625646.2.0.CO;2>CrossRefGoogle Scholar
Allison, P. A., and Wells, M. R. 2006. Circulation in large ancient epicontinental seas: what was different and why? Palaios 21:513515.CrossRefGoogle Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:1153611542.CrossRefGoogle ScholarPubMed
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nurnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1990. Late Palaeozoic provinciality in the marine realm. In Scotese, C. R. and McKerrow, W. S., eds. Palaeozoic palaeogeography and biogeography. Geological Society of London Memoir 12:307323.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.2.0.CO;2>CrossRefGoogle Scholar
Campbell, C. A., and Valentine, J. W. 1977. Comparability of modern and ancient marine faunal provinces. Paleobiology 3:4957.CrossRefGoogle Scholar
Cocks, L. R. M., and Torsvik, T. H. 2007. Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic. Earth-Science Reviews 82:2974.CrossRefGoogle Scholar
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345366.CrossRefGoogle Scholar
Harper, D. A. T. 1992. Ordovician provincial signals from Appalachian-Caledonian terranes. Terra Nova 4:204209.CrossRefGoogle Scholar
Harper, D. A. T., MacNiocaill, C., and Williams, S. H. 1996. The palaeogeography of early Ordovician Iapetus terranes: an integration of faunal and palaeomagnetic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology 121:297312.CrossRefGoogle Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., and Johnson, K. G. 2001. Paleoecology: measuring past biodiversity. Science 293:24012404.CrossRefGoogle ScholarPubMed
Kiessling, W., and Aberhan, M. 2007. Environmental determinants of marine benthic biodiversity dynamics through Triassic–Jurassic time. Paleobiology 33:414434.CrossRefGoogle Scholar
Layou, K. M. 2007. A quantitative null model of additive diversity partitioning: examining the response of beta diversity to extinction. Paleobiology 33:116124.CrossRefGoogle Scholar
Miller, A. I., and Connolly, S. R. 2001. Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology 27:768778.2.0.CO;2>CrossRefGoogle Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.CrossRefGoogle ScholarPubMed
Owen, A. W., Harper, D. A. T., and Romano, M. 1992. The Ordovician biogeography of the Grangegeeth terrane and the Iapetus suture zone in eastern Ireland. Journal of the Geological Society, London 149:36.CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295309.CrossRefGoogle Scholar
Peters, S. E. 2007. The problem with the Paleozoic. Paleobiology 33:165181.CrossRefGoogle Scholar
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.CrossRefGoogle ScholarPubMed
Peterson, K. J. 2005. Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33:929932.CrossRefGoogle Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1974. Quantified coefficients of association and measurement of similarity. Journal of the International Association for Mathematical Geology 6:135152.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum, Milwaukee.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine animal families, 2d ed. Milwaukee Public Museum, Milwaukee.Google ScholarPubMed
Sepkoski, J. J. Jr. 1997. Biodiversity: past, present, and future. Journal of Paleontology 71:533539.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293: 435–137.CrossRefGoogle Scholar
Sheehan, P. M. 1975. Brachiopod synecology in a time of crisis (Late Ordovician–Early Silurian). Paleobiology 1:205212.CrossRefGoogle Scholar
Sheehan, P. M. 2008. Did incumbency play a role in maintaining boundaries between Late Ordovician brachiopod realms? Lethaia 41:147153.CrossRefGoogle Scholar
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology 33:155.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1970. How many marine invertebrate fossil species? A new approximation. Journal of Paleontology 44:410415.Google Scholar
Valentine, J. W., Foin, T. C., and Peart, D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology 4:5566.CrossRefGoogle Scholar
Wagner, P. J., Aberhan, M., Hendy, A., and Kiessling, W. 2007. The effects of taxonomic standardization on sampling-standardized estimates of historical diversity. Proceedings of the Royal Society of London B 274:439444.Google ScholarPubMed
Walker, L. J., Wilkinson, B. H., and Ivany, L. C. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings. Journal of Geology 110:7587.CrossRefGoogle Scholar