Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T00:41:26.136Z Has data issue: false hasContentIssue false

Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution

Published online by Cambridge University Press:  08 February 2016

Dima Grazhdankin*
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom. E-mail: [email protected]

Abstract

The siliciclastic succession of the late Neoproterozoic Vendian Group in the White Sea area demonstrates a wide range of lithofacies, some recurring in a vertical succession. Significantly, each lithofacies contains a distinct assemblage of Ediacaran fossils that represents in situ benthic paleocommunities smothered in life position. These lithofacies define (1) a monospecific Inaria assemblage, restricted to the lower-shoreface muds; (2) a Charnia assemblage, within the middle-shoreface graded siltstone-shale couplets; (3) a Dickinsonia-Kimberella assemblage, confined to the interstratified sandstone and shale of prodelta; and (4) a Onegia-Rangea assemblage, preserved within channelized sandstone beds of the distributary-mouth bar.

In the White Sea area a strong correlation exists between taxonomic composition, biostratinomic features, and paleoecological context of the Ediacaran fossil assemblages. Facies-controlled distribution is also evident in other Ediacaran localities, demonstrating the recurrence of similar facies relationships on a global scale. This pattern is interpreted as representing Ediacaran biofacies with Avalon-type biotas distributed in deep marine habitats, Ediacara-type biotas inhabiting microbial biofilms in shallow marine prodeltaic settings, and infaunal Nama-type biotas found in distributary-mouth bar shoals. This in turn reveals a marked degree of environmental sensitivity and ecological specialization. Correspondence between depositional environment and taxonomic composition speaks against any obvious biogeographic provinciality of the Ediacaran biotas, and also casts doubt on claims of substantial evolutionary change.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, M. M., and Morris, S. Conway 1982. A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Conception and St. John's Groups (late Precambrian), Avalon Peninsula, Newfoundland. Proceedings of the Third North American Paleontological Convention 1:18.Google Scholar
Ausich, W. I., and Bottjer, D. J. 2001. Sessile invertebrates. Pp. 384386in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology II. Blackwell Science, Oxford.Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, Eastern Newfoundland). In Landing, E. and Narbonne, G. M., eds. Trace fossils, small shelly fossils and the Precambrian-Cambrian boundary. Bulletin of the New York State Museum 463:89.Google Scholar
Bland, B. H. 1984. Arumberia Glaessner & Walter, a review of its potential for correlation in the region of the Precambrian-Cambrian boundary. Geological Magazine 121:624633.CrossRefGoogle Scholar
Bowring, S. A., and Erwin, D. H. 1998. A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today 8(9):18.Google Scholar
Bowring, S. A., and Erwin, D. H., Myrow, P., Landing, E., Ramezani, J., and Grotzinger, J. 2003. Geochronological constraints on Terminal Neoproterozoic events and the rise of Metazoans. Geophysical Research Abstracts 5:13219.Google Scholar
Clapham, M. E., and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Colpron, M., Logan, J. M., and Mortensen, J. K. 2002. U-Pb zircon age constraint for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia. Canadian Journal of Earth Sciences 39:133143.CrossRefGoogle Scholar
Compston, W., and Jenkins, R. J. F. 1994. Time points within the Vendian by ion probe. U.S. Geological Survey Circular 1107:65.Google Scholar
Compston, W., and Jenkins, R. J. F., Sambridge, M. S., Reinfrank, R. F., Moczydlowska, M., Vidal, G., and Claesson, S. 1995. Numerical ages of volcanic rocks and the earliest faunal zone within the late Precambrian of east Poland. Journal of the Geological Society, London 152:599611.CrossRefGoogle Scholar
Compston, W., and Jenkins, R. J. F., Wright, A. E., and Toghill, P. 2002. Dating the late Precambrian volcanicity of England and Wales. Journal of the Geological Society, London 159:323339.CrossRefGoogle Scholar
Crimes, T. P., and Fedonkin, M. A. 1996. Biotic changes in platform communities across the Precambrian-Phanerozoic boundary. Rivista Italiana di Paleontologia e Stratigrafia 102:317332.Google Scholar
Donovan, S. K. 1987. The fit of the continents in the late Precambrian. Nature 327:139141.CrossRefGoogle Scholar
Fedo, C. M., and Cooper, J. D. 1990. Braided fluvial to marine transition: the basal lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California. Journal of Sedimentary Petrology 60:220234.Google Scholar
Fedonkin, M. A. 1981. Belomorskaia biota venda: dokembriiskaia besskeletnaia fauna severa Russkoi platformy. Trudy Geologicheskogo Instituta 342:1100. Nauka, Moscow.Google Scholar
Fedonkin, M. A. 1987. Besskeletnaia fauna venda i eë mesto v evoliutsii Metazoa. Trudy Paleontologicheskogo Instituta 226:1175. Nauka, Moscow.Google Scholar
Fedonkin, M. A. 1990. Systematic description of Vendian Metazoa. Pp. 71120in Sokolov, and Iwanowski, 1990.Google Scholar
Fedonkin, M. A. 1992. Vendian faunas and the early evolution of Metazoa. Pp. 87129in Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Fedonkin, M. A. 1994. Vendian body fossils and trace fossils. Pp. 370388in Bengtson, S., ed. Early life on Earth (Nobel Symposium No. 84). Columbia University Press, New York.Google Scholar
Fedonkin, M. A. 1996. The oldest fossil animals in ecological perspective. In Ghiselin, M. T. and Pinna, G., eds. New perspectives on the history of life. Memoirs of the California Academy of Sciences 20:3145.Google Scholar
Fedonkin, M. A. 2002. Andiva ivantsovi gen. et sp. n. and related carapace-bearing Ediacaran fossils from the Vendian of the Winter Coast, White Sea, Russia. Italian Journal of Zoology 69:175181.CrossRefGoogle Scholar
Fedonkin, M. A. 2003. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research 7:941.CrossRefGoogle Scholar
Gehling, J. G. 1988. A cnidarian of actinian-grade from the Ediacaran Pound Subgroup, South Australia. Alcheringa 12:299314.CrossRefGoogle Scholar
Gehling, J. G. 1991. The case of Ediacaran fossil roots to the metazoan tree. In Radhakrishna, B. P., ed. The world of Martin F. Glaessner. Geological Society of India Memoir 20:181224. Bangalore.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:4057.CrossRefGoogle Scholar
Gehling, J. G. 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research 100:6595.CrossRefGoogle Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43:427456.CrossRefGoogle Scholar
Gerdes, G., Klenke, T., and Noffke, N. 2000. Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47:279308.CrossRefGoogle Scholar
Germs, G. J. B. 1983. Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa/Namibia. Special Publications of the Geological Society of South Africa 11:89114.Google Scholar
Glaessner, M. F. 1984. The dawn of animal life: a biohistorical study. Cambridge University Press, Cambridge.Google Scholar
Glaessner, M. F., and Wade, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9:599628.Google Scholar
Gnilovskaya, M. B. 1990. Vendotaenids—Vendian metaphytes. Pp. 138147in Sokolov, and Iwanowski, 1990.Google Scholar
Gnilovskaya, M. B. 1996. New saarinides from the Vendian of the Russian Platform. Transactions (Doklady) of the Russian Academy of Sciences, Earth Science Sections 384:548552.Google Scholar
Grazhdankin, D. V. 2000. The Ediacaran genus Inaria: a taphonomic/morphodynamic analysis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 216:134.CrossRefGoogle Scholar
Grazhdankin, D. V. 2001. Microbial origin of some of the Ediacaran fossils. Geological Society of America Abstracts with Programs 33:429.Google Scholar
Grazhdankin, D. V. 2003. Stratigraphy and depositional environment of the Vendian Complex in the Southeast White Sea area. Stratigraphy and Geological Correlation 11:313331.Google Scholar
Grazhdankin, D. V., and Ivantsov, A. Yu. 1996. Reconstructions of biotopes of ancient Metazoa of the late Vendian White Sea biota. Paleontological Journal 30:674678.Google Scholar
Grazhdankin, D. V., and Seilacher, A. 2002. Underground Vendobionta from Namibia. Palaeontology 45:5778.CrossRefGoogle Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598604.CrossRefGoogle Scholar
Hagadorn, J. H., and Waggoner, B. 2000. Ediacaran fossils from the southwestern Great Basin, United States. Journal of Paleontology 74:349359.2.0.CO;2>CrossRefGoogle Scholar
Hahn, G., and Pflug, H. D. 1985. Polypenartige Organismen aus dem Jung-Präkambrium (Nama-Gruppe) von Namibia. Geologica et Palaeontologica 19:113.Google Scholar
Hahn, G., and Pflug, H. D. 1988. Zweischalige Organismen aus dem Jung-Präkambrium (Vendium) von Namibia (SW-Afrika). Geologica et Palaeontologica 22:119.Google Scholar
Hartz, E. H., and Torsvik, T. H. 2002. Baltica upside down: a new plate tectonic model for Rodinia and the Iapetus Ocean. Geology 30:255258.2.0.CO;2>CrossRefGoogle Scholar
Ivantsov, A. Yu. 1999. A new dickinsonid from the Upper Vendian of the White Sea Winter Coast (Russia, Arkhangelsk Region). Paleontological Journal 33:211221.Google Scholar
Ivantsov, A. Yu. 2001. Vendia and other Precambrian “arthropods.” Paleontological Journal 35:335343.Google Scholar
Ivantsov, A. Yu., and Grazhdankin, D. V. 1997. A new representative of the Petalonamae from the upper Vendian of the Arkhangelsk region. Paleontological Journal 31:116.Google Scholar
Ivantsov, A. Yu. and Fedonkin, M. A. 2002. Conulariid-like fossil from the Vendian of Russia: a metazoan clade across the Proterozoic/Palaeozoic boundary. Palaeontology 45:12191229.CrossRefGoogle Scholar
Ivantsov, A. Yu., and Malakhovskaya, Ya. E. 2002. Giant traces of Vendian animals. Transactions (Doklady) of the Russian Academy of Sciences, Earth Science Section 385A:618622.Google Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages. Pp. 131176in Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Jenkins, R. J. F. 1995. The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research 73:5169.CrossRefGoogle Scholar
Jensen, S., Gehling, J. G., and Droser, M. L. 1998. Ediacara-type fossils in Cambrian sediments. Nature 393:567569.CrossRefGoogle Scholar
Kalberg, E. A. 1940. Geologicheskoe opisanie Onezhskogo poluostrova. Trudy Severnogo Geologicheskogo Upravleniia 5:163. Leningrad, Gosnauchtekhizdat.Google Scholar
Kaufman, A. J., Knoll, A. H., and Narbonne, G. M. 1997. Isotopes, ice ages, and terminal Proterozoic earth history. Proceedings of the National Academy of Sciences USA 94:66006605.CrossRefGoogle ScholarPubMed
Keller, B. M. 1976. Besskeletnye zhivotnye dokembriia i ikh stratigraficheskoe znachenie. Izvestiia Akademii Nauk SSSR, Seriia Geologicheskaia 8:6877.Google Scholar
Knoll, A. H., Grotzinger, J. P., Kaufman, A. J., and Kolosov, P. 1995. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73:251270.CrossRefGoogle ScholarPubMed
Korenchuk, L. V. 1983. Etapy formirovania vendskih otlozhenii iugo-zapadnoi okrainy Vostochno-Evropeiskoi platformy. Pp.124147in Ryabenko, V. A., ed. Stratigrafia i formatsii dokembria Ukrainy. Naukova Dumka, Kiev.Google Scholar
MacNaughton, R. B., Narbonne, G. M., and Dalrymple, R. W. 2000. Neoproterozoic slope deposits, Mackenzie Mountains, northwestern Canada: implications for passive-margin development and Ediacaran faunal ecology. Canadian Journal of Earth Sciences 37:9971020.CrossRefGoogle Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288:841845.CrossRefGoogle ScholarPubMed
Maslov, A. V., Grazhdankin, D. V., and Krupenin, M. T. 2003. Sedimentatsionnye osobennosti porod i usloviia formirovaniia osadochnykh posledovatelnostei nizhnei podsvity chernokamenskoi svity venda v basseine r. Sylvitsa. Ezhegodnik Instituta Geologii i Geokhimii Uralskogo Otdeleniia Rossiiskoi Akademii Nauk, Ekaterinburg 2002:7082.Google Scholar
Narbonne, G. M., and Aitken, J. D. 1995. Neoproterozoic of the Mackenzie Mountains, northwestern Canada. Precambrian Research 73:101121.CrossRefGoogle Scholar
Narbonne, G. M., and Aitken, J. D., and Gehling, J. G. 2003. Life after snowball: the oldest complex Ediacaran fossils. Geology 31:2730.2.0.CO;2>CrossRefGoogle Scholar
Narbonne, G. M., and Aitken, J. D., and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30:647676.Google Scholar
Narbonne, G. M., and Aitken, J. D., Kaufman, A. J., and Knoll, A. H. 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Bulletin of the Geological Society of America 106:12811292.2.3.CO;2>CrossRefGoogle ScholarPubMed
Narbonne, G. M., and Aitken, J. D., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from Southern Africa. Journal of Paleontology 71:953967.CrossRefGoogle ScholarPubMed
Nedin, C., and Jenkins, R. J. F. 1998. First occurrence of the Ediacaran fossil Charnia in the southern hemisphere. Alcheringa 22:315316.CrossRefGoogle Scholar
Noffke, N., Knoll, A., and Grotzinger, J. P. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the upper Neoproterozoic Nama Group, Namibia. Palaios 17:533544.2.0.CO;2>CrossRefGoogle Scholar
Normark, W. R., and Piper, D. J. W. 1991. Initiation processes and flow evolution of turbidity currents: implications for the depositional record. In Osborne, R. H., ed. From shoreline to abyss. SEPM Special Publication 46:207230. Tulsa, Okla.Google Scholar
O'Brien, S. J., Wardle, R. J., and King, A. F. 1983. The Avalon Zone: a Pan-African terrane in the Appalachian Orogen of Canada. Geological Journal 18:195222.CrossRefGoogle Scholar
Pirrus, E. A. 1992. Freshening of the Late Vendian basin on the East European Craton. Proceedings of the Estonian Academy of Sciences (Geology) 41:115123.CrossRefGoogle Scholar
Popov, L., and Gorjansky, V. 1994. First record of Upper Cambrian from the eastern White Sea coast: new evidence from obolids (Brachiopoda). GFF 116:3135.CrossRefGoogle Scholar
Ragozina, A. L., and Sivertseva, I. A. 1990. Microfossils of the Valdai Series in the northwestern Arkhangelsk District. Pp. 165171in Sokolov, and Iwanowski, 1990.Google Scholar
Saylor, B. Z. 2003. Sequence stratigraphy and carbonate-siliciclastic mixing in a terminal Proterozoic foreland basin, Urusis Formation, Nama Group, Namibia. Journal of Sedimentary Research 73:264279.CrossRefGoogle Scholar
Saylor, B. Z., Grotzinger, J. P., and Germs, G. J. B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern Namibia. Precambrian Research 73:153171.CrossRefGoogle Scholar
Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P., and Urban, F. 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research 68:12231235.CrossRefGoogle ScholarPubMed
Seilacher, A. 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229239.CrossRefGoogle Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, London 149:607613.CrossRefGoogle Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios 14:8693.CrossRefGoogle Scholar
Sokolov, B. S. 1976. Organicheskii mir Zemli na puti k fanerozoiskoi differentsiatsii. Vestnik Akademii Nauk SSSR 1:126143.Google Scholar
Sokolov, B. S., and Fedonkin, M. A. 1984. The Vendian as the terminal system of the Proterozoic. Episodes 7:1219.CrossRefGoogle Scholar
Sokolov, B. S., and Iwanowski, A. B., eds. 1990. The Vendian System, Vol. 1. Paleontology. Springer, Berlin.Google Scholar
Stankovsky, A. F., Verichev, J. M., and Dobeiko, I. P. 1990. Vendian of the south-eastern White Sea area. Pp. 7687in Sokolov, B. S. and Fedonkin, M. A., eds. The Vendian System, Vol. 2. Regional geology. Springer, Berlin.Google Scholar
Swift, D. J. P., Phillips, S., and Thorne, J. A. 1991. Sedimentation on continental margins, IV: lithofacies and depositional systems. Special Publications of the International Association of Sedimentologists 14:89152.Google Scholar
Verichev, E. M., Volkova, N. A., Piskun, L. V., Sivertseva, I. A., and Stankovsky, A. F. 1990. Akritarkhi ordovika severa Russkoi plity. Izvestiia Akademii Nauk SSSR, Seria Geologicheskaia 7:152155.Google Scholar
Vodanjuk, S. A. 1989. Ostatki besskeletnykh Metazoa iz khatyspytskoi svity Olenëkskogo podniatia. Pp. 6174in Khomentovsky, V. V. and Sovetov, Yu. K., eds. Pozdnii dokembrii i rannii paleozoi Sibiri. Aktualnye voprosy stratigrafii. Institut geologii i geofiziki Sibirskogo otdelenia Akademii Nauk SSSR, Novosibirsk.Google Scholar
Waggoner, B. M. 1999. Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology 25:440458.CrossRefGoogle Scholar
Waggoner, B. M. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology 43:104113.CrossRefGoogle ScholarPubMed
Yakshin, M. S. 1987. Vend Olenëkskogo podniatia. Pp. 1830in Khomentovsky, V. V. and Shenfil, V. Yu., eds. Pozdnii dokembrii i rannii paleozoi Sibiri. Sibirskaia platforma i eë iuzhnoe skladchatoe obramlenie. Institut geologii i geofiziki Sibirskogo otdelenia Akademii nauk SSSR, Novosibirsk.Google Scholar