Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T04:14:21.018Z Has data issue: false hasContentIssue false

Paleophytochemistry: Implications Concerning Plant Evolution

Published online by Cambridge University Press:  08 February 2016

Karl J. Niklas*
Affiliation:
Section of Plant Biology, Cornell University

Extract

Chemical analyses of fossil plants and their associated sediments are currently providing the paleobotanist with biochemical information relevant to the reconstruction of taxonomic relationships. The isolation and chemical identification of various plant pigments from fossils, such as flavonoids and carotenoids (compounds that give flowers their characteristic colors), steroids, fatty acids, and a host of plant phenolic acids, provide the opportunity to characterize the specific paleophytochemical profiles of fossil species.

Type
Current Happenings
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1Freudenberg, K. and Neish, A. C. 1968. Constitution and Biosynthesis of Lignin. 129 pp. Springer-Verlag; New York.CrossRefGoogle Scholar
2Leo, R. F. and Barghoorn, E. S. 1970. Phenolic aldehydes: generation from fossil woods and carbonaceous sediments by oxidative degradation. Science. 168: 582584.CrossRefGoogle Scholar
3Niklas, K. J. 1980. Paleobiochemical techniques and their applications to paleobotany. pp. 143182. In: Reinhold, L., Harborne, J. B. and Swain, T., eds. Progress in Phytochemistry. Vol. 6. Pergamon Press; Oxford and New York.Google Scholar
4Sigleo, A. C. 1978. Organic geochemistry of silicified wood, Petrified Forest National Park, Arizona. Geochim. Cosmochim. Acta. 42: 13971405.CrossRefGoogle Scholar
5Wayman, M., Azhar, M. R., and Koran, Z. 1971. Morphology and chemistry of two ancient woods. Wood and Fibre (J. Soc. Wood Sci. Technol.) 3: 153165.Google Scholar
6Banks, H. P. 1968. The early history of land plants. In: Drake, E., ed. Evolution and Environment: a symposium Presented on the one Hundredth Anniversary of the Foundation of the Peabody Museum of Natural History at Yale University. Yale Univ. Press; New Haven and London.Google Scholar
7Edwards, D. and Davies, E. C. W. 1976. Oldest recorded in situ tracheids. Nature. 263: 494495.CrossRefGoogle Scholar
8Niklas, K. J. and Pratt, L. M. 1980. Evidence for lignin-like constituents in Early Silurian (Llandoverian) plant fossils. Science. 209: 396397.CrossRefGoogle ScholarPubMed
9Gensel, P. G. 1977. Morphologic and taxonomic relationships of the Psilotaceae relative to evolutionary lines in early land vascular plants. Brittonia. 29: 1429.CrossRefGoogle Scholar
10Niklas, K. J. and Gensel, P. G. 1976. Chemotaxonomy of some Paleozoic vascular plants. Part I: chemical compositions and preliminary cluster analyses. Brittonia. 28: 353378.Google Scholar
11Niklas, K. J. and Gensel, P. G. 1978. Chemotaxonomy of some Paleozoic vascular plants. Part III: cluster configurations and their bearing on taxonomic relationships. Brittonia. 30: 216232.Google Scholar
12Swain, T. and Cooper-Driver, G. 1981. Biochemical evolution in early land plants. In: Niklas, K. J., ed. Paleobotany, Paleoecology and Evolution. Praeger Press; New York. In Press.Google Scholar
13Swain, F. M., Bratt, J. M., Kirkwood, S., and Tobback, P. 1969. Carbohydrate components of Paleozoic plants. pp. 167180. In: Schenck, P. A. and Havenaar, I., eds. Advances in Organic Geochemistry. Pergamon Press; Oxford.Google Scholar
14Burlingame, A. L., Wszolek, P. C., and Simoneit, B. R. 1969. Fatty acid content of Tasmanites. pp. 131156. In: Schenck, P. A. and Havenaar, I., eds. Advances in Organic Geochemistry. Pergamon Press; Oxford.Google Scholar
15Dilcher, D. L., Pavlick, R. J., and Mitchell, J. 1970. Chlorophyll derivatives in Middle Eocene Sediments. Science. 168: 14471449.CrossRefGoogle ScholarPubMed
16Niklas, K. J. and Giannasi, D. E. 1978. Angiosperm paleo-biochemistry of the Succor Creek Flora (Miocene) Oregon, U.S.A. Am. J. Bot. 65: 943952.CrossRefGoogle Scholar
17Giannasi, D. E. 1977. Flavonoids and other chemical constituents of fossil Miocene Zelkova (Ulmaceae). Science. 196: 877878.Google Scholar
18Giannasi, D. E. and Niklas, K. J. 1977. Flavonoid and other chemical constituents of fossil Miocene Celtis and Ulmus (Succor Creek Flora). Science. 197: 765767.CrossRefGoogle Scholar
19Giannasi, D. E. 1978. Systematic aspects of flavonoid biosynthesis and evolution. Bot. Rev. 44: 339429.CrossRefGoogle Scholar
20Wong, E. 1976. Biosynthesis of flavonoids. pp. 464526. In: Goodwin, T. W., ed. Chemistry and Biochemistry of Plant Pigments. Vol. 1, 2nd ed.Academic Press; New York.Google Scholar
21Taylor, T. N. and Millay, M. A. 1977. Structurally preserved fossil cell contents. Trans. Am. Micros. Soc. 96: 390393.CrossRefGoogle Scholar
22Niklas, K. J., Brown, R. M. Jr., Santos, R., and Vian, B. 1978. Ultrastructure and cytochemistry of Miocene angiosperm leaf tissues. Proc. Natl. Acad. Sci. U.S.A. 75: 32633267.CrossRefGoogle ScholarPubMed
23Niklas, K. J. and Brown, R. M. Jr. 1981. Ultrastructural and paleobiochemical correlations among fossil leaf tissues from the St. Maries River (Clarkia) Area, Northern Idaho, U.S.A., Am. J. Bot. 68: 332341.Google Scholar