Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T11:09:46.294Z Has data issue: false hasContentIssue false

Paleontological data and molecular phylogenetic analysis

Published online by Cambridge University Press:  08 February 2016

Andrew B. Smith
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
D. T. J. Littlewood
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

Abstract

Molecular data are becoming an indispensable tool for the reconstruction of phylogenies. Fossil molecular data remain scarce, but have the potential to resolve patterns of deep branching and provide empirical tests of tree reconstruction techniques. A total evidence approach, combining and comparing complementary morphological, molecular and stratigraphical data from both recent and fossil taxa, is advocated as the most promising way forward because there are several well-established problems that can afflict the analysis of molecular sequence data sometimes resulting in spurious tree topologies. The integration of evidence allows us to: (1) choose suitable taxa for molecular phylogenetic analysis for the question at hand; (2) discriminate between conflicting hypotheses of taxonomic relationship and phylogeny; (3) evaluate procedures and assumptions underlying methods of building trees; and (4) estimate rates of molecular evolution in the geological past. Paleontology offers a set of independent data for comparison and corroboration of analyses and provides the only direct means of calibrating molecular trees, thus giving insight into rates of molecular evolution in the geological past.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allard, M. W., and Miyamoto, M. M. 1992. Perspective: testing phylogenetic approaches with empirical data, as illustrated with the parsimony method. Molecular Biology and Evolution 9:778786.Google Scholar
Ax, P. 1987. The phylogenetic system: the systematization of organisms on the basis of their phylogenesis, transl. Jefferies, R. P. S.John Wiley and Sons, London.Google Scholar
Ballard, J. W., Olsen, G. J., Faith, D. P., Odgers, W. A., Rowell, D. M., and Atkinson, P. W. 1992. Evidence from 12S ribosomal RNA sequences that onycophorans are modified arthropods. Science 258:13451348.CrossRefGoogle ScholarPubMed
Barrett, M., Donoghue, M. J., and Sober, E. 1991. Against consensus. Systematic Zoology. 40:486493.CrossRefGoogle Scholar
Bowman, B. H., Taylor, J. W., Brownlee, A. G., Lee, J., Lu, S.-D., and White, T. J. 1992. Molecular evolution of the Fungi: relationships of the Basidiomycetes, Ascomycetes and Chytridiomycetes. Molecular Biology and Evolution 9:285296.Google ScholarPubMed
Briggs, D., and Kay, L. 1990. Biomolecular palaeontology. Natural Environment Research Council News, July pp. 1114.Google Scholar
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.CrossRefGoogle ScholarPubMed
Cano, R. J., Poinar, H. N., and Poinar, G. O. 1992. Isolation and partial characterization of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25-40 million year old amber. Medical Science Research 20:249251.Google Scholar
Cano, R. J., Poinar, H. N., Pieniazek, N. J., Acra, A., and Poinar, G. O. 1993. Amplification and sequencing of DNA from a 120-135 million-year-old weevil. Nature (London) 363:536538.CrossRefGoogle Scholar
Collins, M., Curry, G. B., Muyzer, G., Quinn, R., Xu, S., Westbroek, P., and Ewing, S. 1991. Immunological investigations of relationships within terebratulid brachiopods. Palaeontology 34:785796.Google Scholar
Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Palaeozoic echinoderms. Pp. 61100in Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.Google Scholar
Cracraft, J., and Helm-Bychowski, K. 1991. Parsimony and phylogenetic inference using DNA sequences: some methodological strategies. Pp. 184220in Miyamoto, and Cracraft, 1991.Google Scholar
DeBry, R. W. 1992. The consistency of several phylogenetic-inference methods under varying evolutionary rates. Molecular Biology and Evolution 9:537551.Google ScholarPubMed
DeSalle, R., Gatesy, J., Wheeler, W., and Grimaldi, D. 1992. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257:19331936.CrossRefGoogle ScholarPubMed
Donoghue, M., Doyle, J., Gauthier, J., Kluge, A., and Rowe, T. 1989. The importance of fossils in phylogenetic reconstruction. Annual Reviews in Ecology and Systematics 20:431460.CrossRefGoogle Scholar
Doyle, J., and Donoghue, M. 1987. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Reviews 52:321431.CrossRefGoogle Scholar
Eglinton, G., and Logan, G. A. 1991. Molecular preservation. Philosophical Transactions of the Royal Society, London B 333:315328.Google ScholarPubMed
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27:401410.CrossRefGoogle Scholar
Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Annual Reviews of Genetics 22:521565.CrossRefGoogle ScholarPubMed
Fernholm, B., Bremer, K., and Jornvall, H., eds. 1989. The hierarchy of life. Excerpta Medica, Amsterdam.Google Scholar
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105210.CrossRefGoogle ScholarPubMed
Golenberg, E. M. 1991. Amplification and analysis of Miocene plant fossil DNA. Philosophical Transactions of the Royal Society, London B 333:419427.Google ScholarPubMed
Golenberg, E. M., Giannassi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., and Zurawski, G. 1990. Choroplast DNA sequence from a Miocene Magnolia species. Nature (London) 344:656658.CrossRefGoogle Scholar
Goodman, M. 1989. Emerging alliance of phylogenetic systematics and molecular biology: a new age of exploration. Pp. 4361in Fernholm, et al. 1989.Google Scholar
Gould, S. J. 1992. Magnolias from Moscow. Natural History 9/92:1018.Google Scholar
Graur, D. 1993. Molecular phylogeny and the higher classification of eutherian mammals. Trends in Ecology and Evolution 8:141147.CrossRefGoogle ScholarPubMed
Hagelberg, E., Bell, L. S., Allen, T., Boyde, A., Jones, S. J., and Clegg, J. B. 1991. Analysis of ancient bone DNA: techniques and applications. Philosophical Transactions of the Royal Society, London B 333:399407.Google ScholarPubMed
Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock. Journal of Molecular Evolution 22:160174.CrossRefGoogle ScholarPubMed
Hey, J. 1992. Using phylogenetic trees to study speciation and extinction. Evolution 46:627640.CrossRefGoogle ScholarPubMed
Hedges, S. B., and Maxson, L. R. 1992. 18S rRNA sequences and amniote phylogeny: reply to Marshall. Molecular Biology and Evolution 9:374377.Google Scholar
Hedges, S. B., Moberg, K. D., and Maxson, L. R. 1990. Tetrapod phylogeny inferred from 18S and 28S ribosomal RNA sequences and a review of the evidence for amniote relationships. Molecular Biology and Evolution 7:607633.Google Scholar
Higuchi, R., Bowman, B., Friedburger, M., Ryder, O. A., and Wilson, A. C. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature (London) 312:282284.CrossRefGoogle ScholarPubMed
Hillis, D. M. 1991. Discriminating between phylogenetic signal and random noise in DNA sequences. Pp. 278294in Miyamoto, and Cracraft, 1991.Google Scholar
Hillis, D. M., and Dixon, M. T. 1989. Vertebrate phylogeny: evidence from 28S ribosomal DNA sequences. Pp. 355367in Fernholm, et al. 1989.Google Scholar
Hillis, D. M., Bull, J. J., White, M. E., Badgett, M. R., and Molineux, I. J. 1992. Experimental phylogenetics: generation of a known phylogeny. Science 255:589592.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. 1991. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology 40:458469.CrossRefGoogle Scholar
Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111120.CrossRefGoogle ScholarPubMed
Kluge, A. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38:725.CrossRefGoogle Scholar
Krajewski, C. 1989. Phylogenetic relationships amongst cranes (Gruiformes: Gruidae) based on DNA hybridization. The Auk 106:603618.Google Scholar
Kraus, F., and Miyamoto, M. M. 1991. Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial sequences. Systematic Zoology 40:117130.CrossRefGoogle Scholar
Lanyon, S. M. 1988. The stochastic mode of molecular evolution: what consequences for systematic investigations? The Auk 105:565573.CrossRefGoogle Scholar
Larson, A., Kirk, M. M., and Kirk, D. L. 1992. Molecular phylogeny of the volvocine flagellates. Molecular Biology and Evolution 9:85105.Google ScholarPubMed
Li, P., and Bousquet, J. 1992. Relative-rate test for nucleotide substitutions between two lineages. Molecular Biology and Evolution 9:11851189.Google Scholar
Lowenstein, J. M., Sarich, V. M., and Richardson, B. J. 1981. Albumin systematics of the extinct mammoth and Tasmanian wolf. Nature (London) 291:409411.CrossRefGoogle ScholarPubMed
Marshall, C. R. 1992. Substitution bias, weighted parsimony and amniote phylogeny as inferred from 18S rRNA sequences. Molecular Biology and Evolution 9:370373.Google ScholarPubMed
Marshall, C. R., and Schultze, H.-P. 1992. Relative importance of molecular, neontological and paleontological data in understanding the biology of the vertebrate invasion of land. Journal of Molecular Evolution. 35:93101.CrossRefGoogle ScholarPubMed
Marshall, C. R., and Swift, H. 1992. DNA-DNA hybridization phylogeny of sand dollars and highly reproducible extent of hybridization values. Journal of Molecular Evolution 34:3144.CrossRefGoogle ScholarPubMed
Meyer, A., and Dolven, S. I. 1992. Molecules, fossils and the origin of tetrapods. Journal of Molecular Evolution 35:102113.CrossRefGoogle ScholarPubMed
Meyer, A., and Wilson, A. C. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. Journal of Molecular Evolution 31:359364.CrossRefGoogle ScholarPubMed
Mickevich, M. F. 1978. Taxonomic congruence. Systematic Zoology 27:143158.CrossRefGoogle Scholar
Miyamoto, M. M., and Cracraft, J., eds. 1991. Phylogenetic analysis of DNA sequences. Oxford University Press.CrossRefGoogle Scholar
Miyamoto, M. M., and Cracraft, J., eds. 1991. Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics. Pp. 317in Miyamoto, and Cracraft, 1991.Google Scholar
Miyamoto, M. M., and Goodman, M. 1990. DNA systematics and evolution revealed from molecular phylogenies. Annual Reviews in Ecology and Systematics 21:197220.CrossRefGoogle Scholar
Mooi, R. 1990. Paedomorphosis, Aristotle's lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology 16:2548.CrossRefGoogle Scholar
Nee, S., Moors, A. Ø., and Harvey, P. H. 1992. Tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences, U.S.A. 89:83228326.CrossRefGoogle ScholarPubMed
Nei, M. 1991. Relative efficiencies of different tree-making methods for molecular data. Pp. 90128in Miyamoto, and Cracraft, 1991.Google Scholar
Nelson, G., and Platnick, N. 1981. Systematics and biogeography: cladistics and vicariance. Columbia University Press, New York.Google Scholar
Norrell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118in Novacek, and Wheeler, 1992.Google Scholar
Novacek, M. J. 1988. The major groups of Eutherian mammals. Pp. 3171in Benton, M., ed. The phylogeny and classification of tetrapods, Vol. 2; Mammals. Clarendon Press, Oxford.Google Scholar
Novacek, M. J. 1992a. Fossils, topologies, missing data and the higher level phylogeny of Eutherian mammals. Systematic Biology 41:5873.CrossRefGoogle Scholar
Novacek, M. J. 1992b. Fossils as critical data for phylogeny. Pp. 4688in Novacek, and Wheeler, 1992.Google Scholar
Novacek, M. J. 1992c. Mammalian phylogeny: shaking the tree. Nature (London) 356:121125.CrossRefGoogle ScholarPubMed
Novacek, M. J., and Wheeler, Q. D., eds. 1992. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Pääbo, S. 1985. Molecular cloning of ancient Egyptian mummy DNA. Nature (London) 314:644645.CrossRefGoogle ScholarPubMed
Pääbo, S. 1989. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proceedings of the National Academy of Sciences, U.S.A. 86:19391943.CrossRefGoogle ScholarPubMed
Pääbo, S., Gifford, J. A., and Wilson, A. C. 1991. Mitochondrial DNA sequences from a 7000-year-old brain. Nucleic Acids Research 16:97759787.CrossRefGoogle Scholar
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Reviews in Ecology and Systematics 12:195223.CrossRefGoogle Scholar
Penny, D., and Hendy, M. D. 1986. Estimating the reliability of evolutionary trees. Molecular Biology and Evolution 3:403417.Google ScholarPubMed
Poinar, H. N., Cano, R. J., and Poinar, G. O. 1993. DNA from an extinct plant. Nature (London) 363:677,CrossRefGoogle Scholar
Rohlf, F. J., Chang, W. S., Sokal, R. R., and Kim, J.-Y. 1990. Accuracy of estimated phylogenies: effects of tree topology and evolutionary model. Evolution 44:16711684.CrossRefGoogle ScholarPubMed
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R. G., Horn, G. T., Mullis, K. B., and Erlich, H. A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487491.CrossRefGoogle ScholarPubMed
Saitou, N. 1989. A theoretical study of the underestimation of branch lengths by the maximum parsimony principle. Systematic Zoology 38:16.CrossRefGoogle Scholar
Saitou, N., and Imanishi, T. 1989. Relative efficiencies of the Fitch-Margoliash, Maximum-parsimony, Maximum-likelihood, Minimum-evolution, and Neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Molecular Biology and Evolution 6:514525.Google Scholar
Saitou, N., and Nei, M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406425.Google Scholar
Schleifer, K. H., and Ludwig, W. 1989. Phylogenetic relationships among bacteria. Pp. 103117in Fernholm, et al. 1989.Google Scholar
Sheldon, F. H. 1987. Rates of single-copy DNA evolution in herons. Molecular Biology and Evolution 4:5669.Google ScholarPubMed
Smith, A. B. 1989. RNA sequence data in phylogenetic reconstruction: testing the limits of its resolution. Cladistics 5:321344.CrossRefGoogle ScholarPubMed
Smith, A. B. 1992. Echinoderm phylogeny: morphology and molecules approach accord. Trends in Ecology and Evolution 7:224229.CrossRefGoogle ScholarPubMed
Smith, A. B. 1994a. Rooting molecular trees: problems and strategies. Biological Journal of the Linnean Society 51:279292.CrossRefGoogle Scholar
Smith, A. B. 1994b. Systematics and the fossil record: discovering evolutionary patterns. Blackwells, London.CrossRefGoogle Scholar
Smith, A. B., and Hollingworth, N. T. J. 1990. Tooth structure and phylogeny of the Upper Permian echinoid Miocidaris keyserlingi. Proceedings of the Yorkshire Geological Society 48:4760.CrossRefGoogle Scholar
Smith, A. B., and Patterson, C. 1989. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.Google Scholar
Smith, A. B., Lafay, B., and Christen, R. 1992. Comparison of morphological and molecular rates of evolution: 28S ribosomal RNA in echinoids. Philosophical Transactions of the Royal Society, London B 338:365382.Google ScholarPubMed
Soltis, P. S., and Soltis, D. E., and Smiley, C. J. 1992. An rbcL sequence from Miocene Taxodium [bald cypress]. Proceedings of the National Academy of Sciences, U.S.A. 89:449451.CrossRefGoogle ScholarPubMed
Sourdis, J., and Krimbas, K. 1987. Accuracy of phylogenetic trees estimated from DNA sequence data. Molecular Biology and Evolution 4:159166.Google ScholarPubMed
Swofford, D. L. 1991. When are phylogeny estimates from molecular and morphological data incongruent. Pp. 295333in Miyamoto, and Cracraft, 1991.Google Scholar
Tamura, K. 1992. The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Molecular Biology and Evolution 9:814825.Google ScholarPubMed
Thomas, R. H., Schaffner, W., Wilson, A. C., and Pääbo, S. 1989. DNA phylogeny of the extinct marsupial wolf. Nature (London) 340:465467.CrossRefGoogle ScholarPubMed
Turberville, J. M., Pfeider, D. M., Field, K. G., and Raff, R. A. 1991. The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Molecular Biology and Evolution 8:669686.Google Scholar
Turberville, J. M., Field, K. G., and Raff, R. A. 1992. Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. Molecular Biology and Evolution 9:235249.Google Scholar
van de Peer, Y., Neefs, J-M., de Rijk, P., and de Wachter, R. 1993. Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. Journal of Molecular Evolution 37:221232.CrossRefGoogle ScholarPubMed
Westbroek, P. 1991. Decoding ancient biomolecules. National Environmental Research Council News, July pp. 2627.Google Scholar
Wheeler, W. C. 1992. Extinction, sampling and molecular phylogenetics. Pp. 205215in Novacek, and Wheeler, 1992.Google Scholar
Wheeler, W. C., Cartwright, P., and Hayashi, C. Y. 1993. Arthropod phylogeny: a combined approach. Cladistics 9:139.CrossRefGoogle ScholarPubMed
Woese, C. R. 1989. Archebacteria and the nature of their evolution. Pp. 119130in Fernholm, et al. 1989.Google Scholar
Wyss, A. R., Novacek, M. J., and McKenna, M. C. 1987. Amino acid sequence versus morphological data and the internodal relationships of mammals. Molecular Biology and Evolution 4:99116.Google Scholar