Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T10:07:44.111Z Has data issue: false hasContentIssue false

Paleoenvironmental and paleobiological origins of coccolithophorid genus Watznaueria emergence during the late Aalenian–early Bajocian

Published online by Cambridge University Press:  24 April 2015

Baptiste Suchéras-Marx
Affiliation:
UMR CNRS 5276 LGL-TPE Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Campus de la DOUA, Bâtiment Géode, 69622 Villeurbanne Cedex, France, and Université de Lyon, Université Jean Monnet and UMR-CNRS 6524, Laboratoire Magmas et Volcans, 23 rue du Dr Paul Michelon, 42023 Saint Etienne, France.
Emanuela Mattioli
Affiliation:
UMR CNRS 5276 LGL-TPE, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Campus de la DOUA, Bâtiment Géode, 69622 Villeurbanne Cedex, France
Fabienne Giraud
Affiliation:
Université Grenoble Alpes, ISTerre, F-38041 Grenoble, France and CNRS, ISTerre, F-38041 Grenoble, France
Gilles Escarguel
Affiliation:
UMR CNRS 5276 LGL-TPE, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Campus de la DOUA, Bâtiment Géode, 69622 Villeurbanne Cedex, France

Abstract

The latest Aalenian–early Bajocian time interval (ca. 171-169 Ma) is marked by a global reorganization of oceanic plates with the Central Atlantic opening and the formation of the Pacific plate. This time interval is also marked by a global geochemical perturbation of δ13C with a negative excursion at the Aalenian/Bajocian boundary and a positive excursion during the early Bajocian. Evolutionary diversifications of marine invertebrate taxa, namely ammonites, radiolarians, and coccolithophorids, are recorded at that time. Concerning coccolithophorids, this interval witnesses the diversification and expansion of the most successful Mesozoic genus: Watznaueria. In this study, we explore the potential environmental, ecological, and biological forcing at the origin of Watznaueria diversification and its effect on the coccolith assemblages through quantification of the absolute and relative abundances of calcareous nannofossils in two Middle Jurassic key sections: Cabo Mondego (Portugal) and Chaudon-Norante (France). In both sections, we find an increase in nannofossil absolute abundance and flux at the beginning of the lower Bajocian, coeval with an increase in absolute and relative abundances of Watznaueria spp., followed by a plateau in the middle and upper part of the lower Bajocian. The increase of Watznaueria spp. is synchronous with a decrease in relative abundance of other major coccolith taxa, whereas the absolute abundance of these species did not decrease. During the climatically driven early Bajocian eutrophication event, Watznaueria spp. integrated into the calcareous nannoplankton community in two successive evolutionary steps involving first W. contracta and W. colaccicchii, and second W. britannica and W. aff. manivitiae. Step 1 was driven by an increase in niche carrying capacities linked to the early Bajocian eutrophication. Step 2 was driven by specific adaptation of the newly evolved Watznaueria species to bloom in nutrient-rich environments not exploited before. These evolutionary events have initiated the 100-Myr reign of Watznaueria over the calcareous nannoplankton community.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aguado, R., O’Dogherty, L., and Sandoval, J.. 2008. Fertility changes in surface waters during the Aalenian (mid-Jurassic) of the Western Tethys as revealed by calcareous nannofossils and carbon-cycle perturbations. Marine Micropaleontology 68:268285.CrossRefGoogle Scholar
Ahagon, N., Tanaka, Y., and Ujiié, H.. 1993. Florisphaera profunda, a possible nannoplankton indicator of late Quaternary changes in sea-water turbidity at the northwestern margin of the Pacific. Marine Micropaleontology 22:255274.CrossRefGoogle Scholar
Andruleit, H., Stäger, S., Rogalla, U., and Cepek, P.. 2003. Living coccolithophores in the northern Arabian Sea: ecological tolerances and environmental control. Marine Micropaleontology 49:157181.CrossRefGoogle Scholar
Balch, W. M. 2004. Re-evaluation of the physiological ecology of coccolithophores. Pp. 165190in H. R. Thierstein and J. R. Young, eds. Coccolithophores: from molecular processes to global impact. Springer, Berlin.CrossRefGoogle Scholar
Bartolini, A., and Cecca, F.. 1999. 20 My hiatus in the Jurassic of Umbria-Marche Apennines (Italy): carbonate crisis due to eutrophication. Comptes Rendus Académies des Sciences 329:587595.Google Scholar
Bartolini, A., and Larson, R. L.. 2001. Pacific microplate and the Pangea supercontinent in the Early to Middle Jurassic. Geology 29:735738.2.0.CO;2>CrossRefGoogle Scholar
Bartolini, A., Baumgartner, P. O., and Hunziker, J. C.. 1996. Middle and Late Jurassic carbon stable-isotope stratigraphy and radiolarite sedimentation of the Umbria-Marche Basin (Central Italy). Eclogae Geologicae Helvetiae 89:811844.Google Scholar
Bartolini, A., Baumgartner, P. O., and Guex, J.. 1999. Middle and Late Jurassic radiolarian palaeoecology versus carbon-isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology 145:4360.CrossRefGoogle Scholar
Baumann, K.-H., Böckel, B., and Frenz, M.. 2004. Coccolith contribution to South Atlantic carbonate sedimentation. Pp. 367402in H. R. Thierstein and J. R. Young, eds. Coccolithophores: From molecular processes to global impact. Springer, Berlin.CrossRefGoogle Scholar
Beaudouin, C., Jouet, G., Suc, J.-P., Berné, S., and Escarguel, G.. 2007a. Vegetation dynamics in southern France during the last 30 ky BP in the light of marine palynology. Quaternary Science Reviews 26:10371054.CrossRefGoogle Scholar
Beaudouin, C., Suc, J.-P., Escarguel, G., Arnaud, M., and Charmasson, S.. 2007b. The significance of pollen signal in present-day marine terrigenous sediments: the example of the Gulf of Lions (western Mediterranean Sea). Geobios 40:159172.CrossRefGoogle Scholar
Beaufort, L. 1991. Adaptation of the random settling method for quantitative studies of calcareous nannofossils. Micropaleontology 37:415418.CrossRefGoogle Scholar
Bernaola, G., and Monechi, S.. 2007. Calcareous nannofossil extinction and survivorship across the Cretaceous-Paleogene boundary at Walvis Ridge (ODP Hole 1262C, South Atlantic Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology 255:132156.CrossRefGoogle Scholar
Bill, M., O’Dogherty, L., Guex, J., Baumgartner, P. O., and Masson, H.. 2001. Radiolarite ages in Alpine-Mediterranean ophiolites: constraints on the oceanic spreading and the Tethys-Atlantic connection. Geological Society of America Bulletin 113:129143.2.0.CO;2>CrossRefGoogle Scholar
Blakey, R. C. 2008. Gondwana paleogeography from assembly to breakup: a 500 m.y. odyssey. Geological Society of America Special Papers 441:128. http://www. http://cpgeosystems.com/170moll.jpg.Google Scholar
Bown, P. R. 1987. Taxonomy, evolution, and biostratigraphy of the late Triassic-early Jurassic calcareous nannofossils (Special Papers in Palaeontology 38 Palaeontological Association, London.Google Scholar
Bown, P. R. 2005. Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology 51:299308.CrossRefGoogle Scholar
Bown, P. R., and Young, J. R.. 1998. Techniquesin P. R. Bown, ed. Calcareous nannofossil biostratigraphy. Chapman and Hall/Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Brigaud, B., Durlet, C., Deconinck, J.-F., Vincent, B., Pucéat, E., Thierry, J., and Trouiller, A.. 2009. Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on Middle Jurassic carbonates (Paris Basin, France). Sedimentary Geology 222:181206.CrossRefGoogle Scholar
Broerse, A. T. C., Ziveri, P., van Hinte, J. E., and Honjo, S.. 2000. Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34°N 21°W and 48°N 21°W). Deep-Sea Research Part II: Topical Studies in Oceanography 47:18771905.CrossRefGoogle Scholar
Canales, M. L., and Henriques, M. H.. 2008. Foraminifera from the Aalenian and the Bajocian GSSP (Middle Jurassic) of Murtinheira section (Cabo Mondego, West Portugal): biostratigraphy and paleoenvironmental implications. Marine Micropaleontology 67:155179.CrossRefGoogle Scholar
Canales, M. L., and Henriques, M. H.. 2013. Foraminiferal assemblages from the Bajocian Global Stratotype Section and Point (GSSP) at Cape Mondego (Portugal). Journal of foraminiferal Research 43:182206.CrossRefGoogle Scholar
Cobianchi, M., Erba, E., and Pirini-Radrizzani, C.. 1992. Evolutionary trends of calcareous nannofossil genera Lotharingius and Watznaueria during the Early and Middle Jurassic. Memorie di Scienze Geologiche, Padova 43:1925.Google Scholar
Dera, G., Brigaud, B., Monna, F., Laffont, R., Puceat, E., Deconinck, J.-F., Pellenard, P., Joachimski, M. M., and Durlet, C.. 2011. Climatic ups and downs in a disturbed Jurassic world. Geology 39:215218.CrossRefGoogle Scholar
Dera, G., Priunier, J., Smith, P. L., Haggart, J. W., Popov, E., Guzhov, A., Rogov, M. A., Delsate, D., Thies, D., Cuny, G., Pucéat, E., Charbonnier, G., and Bayon, G.. 2015. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea. Gondwana Research. http://dx.doi.org/10.1016/j.gr.2014.02.006.CrossRefGoogle Scholar
Deutsche Stratigraphische Kommission. 2002. Stratigraphische Tabelle von Deutschland.Google Scholar
Durlet, C., and Thierry, J.. 2000. Modalités séquentielles de la transgression aaléno-bajocienne sur le sud-est du Bassin parisien. Bulletin de la Société Géologique de France 171:327339.CrossRefGoogle Scholar
Erba, E. 1990. Calcareous nannofossil biostratigraphy of some Bajocian sections from the Digne area (SE France). Memorie Descrittive Della Carta Geologica d’Italia XL: 237256.Google Scholar
Erba, E. 2004. Calcareous nannofossils and Mesozoic oceanic anoxic events. Marine Micropaleontology 52:85106.CrossRefGoogle Scholar
Erba, E. 2006. The first 150 million years history of calcareous nannoplankton: biosphere-geosphere interactions. Palaeogeography, Palaeoclimatology, Palaeoecology 232:237250.CrossRefGoogle Scholar
Fernandez-Lopez, S., Henriques, M. H., Mouterde, R., Rocha, R. B., and Sadki, D.. 1988. Le Bajocien inférieur du Cap Mondego (Portugal) - Essai de biozonation. Pp. 301313in R. B. Rocha and A. F. Soares, eds. Second international symposium on Jurassic stratigraphy. Instituto Nacional de Investigação Cientifica, Lisbon.Google Scholar
Fernandez-Lopez, S., Pavia, G., Erba, E., Guiomar, M., Henriques, M. H., Lanza, R., Mangold, C., Morton, N., Olivero, D., and Tiraboschi, D.. 2009. The Global Boundary Stratotype Section and Point (GSSP) for base of the Bathonian Stage (Middle Jurassic), Ravin du Bès Section, SE France. Episodes 32:222248.CrossRefGoogle Scholar
Ferry, S., and Mangold, C.. 1995. Faciès de dépôt et stratigraphie séquentielle des calcaires bajociens du Jura méridional. Documents des Laboratoires de Géologie de Lyon 133:196.Google Scholar
Gallois, R. W., and Medd, A. W.. 1979. Coccolith-rich marker bands in the English Kimmeridge Clay. Geological Magazine 116:247260.CrossRefGoogle Scholar
Geisen, M., Bollmann, J., Herrle, J. O., Mutterlose, J., and Young, J. R.. 1999. Calibration of the random settling technique for calculation of absolute abundances of calcareous nannoplankton. Micropaleontology 45:437442.CrossRefGoogle Scholar
Gidon, M., and Pairis, J. L.. 1992. The influence of the Digne thrust emplacement upon the autochthonous structures of Bes Valley, Alpes-de-Haute-Provence, France. Eclogae Geologicae Helvetiae 85:327359.Google Scholar
Giraud, F. 2009. Calcareous nannofossil productivity and carbonate production across the Middle-Late Jurassic transition in the French Subalpine Basin. Geobios 42:699714.CrossRefGoogle Scholar
Giraud, F., Courtinat, B., and Atrops, F.. 2009. Spatial distribution patterns of calcareous nannofossils across the Callovian-Oxfordian transition in the French Subalpine Basin. Marine Micropaleontology 72:129145.CrossRefGoogle Scholar
Gomez, J. J., Canales, M. L., Ureta, S., and Goy, A.. 2009. Palaeoclimatic and biotic changes during the Aalenian (Middle Jurassic) at the southern Laurasian Seaway (Basque–Cantabrian Basin, northern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 275:1427.CrossRefGoogle Scholar
Goy, G. 1981. Nannofossiles calcaires des Schistes Carton (Toarcien inférieur) du Bassin de Paris ((Documents de la RCP 459, No. 1: Nature et génèse des faciès confinés). CNRS, Paris.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.. 2012. The geologic time scale 2012. Elsevier, Amsterdam.Google Scholar
Henriques, M. H., Gardin, S., Gomes, C. R., Soares, A. F., Rocha, R. B., Marques, J. F., Lapa, M. R., and Montenegro, J. D.. 1994. The Aalenian-Bajocian boundary at Cabo Mondego (Portugal). Pp. 6377in S. Cresta and G. Pavia, eds. Third international meeting on Aalenian and Bajocian stratigraphy. Miscellanea Servizio Geologico Nazionale, Marrakesh.Google Scholar
Hesselbo, S. P. 2008. Sequence stratigraphy and inferred relative sea-level change from the onshore British Jurassic. Proceedings of the Geologists’ Association 119:1934.CrossRefGoogle Scholar
Hesselbo, S. P., Morgans-Bell, H. S., McElwain, J. C., Rees, P. M., Robinson, S. A., and Ross, C. E.. 2003. Carbon-cycle perturbation in the middle Jurassic and accompanying changes in the terrestrial paleoenvironment. Journal of Geology 111:259276.CrossRefGoogle Scholar
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., and Parkinson, P. N.. 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, London 159:351378.CrossRefGoogle Scholar
Kinkel, H., Baumann, K.-H., and Cepek, M.. 2000. Coccolithophores in the equatorial Atlantic Ocean: response to seasonal and Late Quaternary surface water variability. Marine Micropaleontology 39:87112.CrossRefGoogle Scholar
Labails, C., Olivet, J.-L., Aslanian, D., and Roest, W. R.. 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters 297:355368.CrossRefGoogle Scholar
Lees, J. A., Bown, P. R., and Mattioli, E.. 2005. Problems with proxies? Cautionary tales of calcareous nannofossil paleoenvironmental indicators. Micropaleontology 51:333343.CrossRefGoogle Scholar
Lees, J. A., Bown, P. R., Young, J. R., and Riding, J. B.. 2004. Evidence for annual records of phytoplankton productivity in the Kimmeridge Clay Formation coccolith stone bands (Upper Jurassic, Dorset, UK). Marine Micropaleontology 52:2949.CrossRefGoogle Scholar
Lees, J. A., Bown, P. R., and Young, J. R.. 2006. Photic zone palaeoenvironments of the Kimmeridge Clay Formation (Upper Jurassic, UK) suggested by calcareous nannoplankton palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 235:110134.CrossRefGoogle Scholar
Lemoine, M. 1973. About gravity gliding tectonics in the western Alps. Pp. 201216in K. A. De Jong and R. Scholten, eds. Gravity and tectonics. Wiley, New York.Google Scholar
Léonide, P., Floquet, M., and Villier, L.. 2007. Interaction of tectonics, eustasy, climate and carbonate production on the sedimentary evolution of an early/middle Jurassic extensional basin (Southern Provence Sub-basin, SE France). Basin Research 19:125152.CrossRefGoogle Scholar
Mattioli, E. 1996. New calcareous nannofossil species from the Early Jurassic of Tethys. Rivista Italiana di Paleontologia e Stratigrafia 102:397412.Google Scholar
Mattioli, E., and Erba, E.. 1999. Synthesis of calcareous nannofossil events in Tethyan Lower and Middle Jurassic successions. Rivista Italiana di Paleontologia e Stratigrafia 105:343376.Google Scholar
Mattioli, E., and Pittet, B.. 2004. Spatial and temporal distribution of calcareous nannofossils along a proximal-distal transect in the Umbria-Marche Basin (Lower Jurassic; Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 205:295316.CrossRefGoogle Scholar
Medd, A.W. 1979. The Upper Jurassic coccoliths from the Haddenham and Gamlingay boreholes (Cambridgeshire, England). Eclogae Geologica Helvetica 72:19109.Google Scholar
Metodiev, L., and Koleva-Rekalova, E.. 2008. Stable isotope records (δ18O and δ13C) of Lower-Middle Jurassic belemnites from the Western Balkan mountains (Bulgaria): palaeoenvironmental application. Applied Geochemistry 23:28452856.CrossRefGoogle Scholar
Nakanishi, M., Tamaki, K., and Kobayashi, K.. 1992. A new Mesozoic isochron chart of the northwestern Pacific Ocean: paleomagnetic and tectonic implications. Geophysical Research Letters 19:693696.CrossRefGoogle Scholar
O’Dogherty, L., Sandoval, J., Bartolini, A., Bruchez, S., Bill, M., and Guex, J.. 2006. Carbon-isotope stratigraphy and ammonite faunal turnover for the Middle Jurassic in the Southern Iberian palaeomargin. Palaeogeography, Palaeoclimatology, Palaeoecology 239:311333.CrossRefGoogle Scholar
Pankhurst, R. J., Riley, T. R., Fanning, C. M., and Kelley, S. P.. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology 41:605625.CrossRefGoogle Scholar
Pavia, G. 1973. Ammoniti del Baiociano superiore di Digne (Francia SE, Dip. Basses-Alpes). Bollettino della Societa Paleontologica Italiana 19:75142.Google Scholar
Pavia, G. 1983. Ammoniti e biostratigrafia del Baiociano inferiore di Digne (Francia SE, Dip. Alpes-Haute-Provence). Monografie Museo Regionale di Scienze Naturali, Torino.Google Scholar
Pavia, G., and Enay, R.. 1997. Definition of the Aalenian-Bajocian Stage boundary. Episodes 20(1): 1622.CrossRefGoogle Scholar
Philippe, M., and Thevenard, F.. 1996. Distribution and palaeocology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of Western Europe. Review of Palaeobotany and Palynology 91:353370.CrossRefGoogle Scholar
Pittet, B., and Mattioli, E.. 2002. The carbonate signal and calcareous nannofossil distribution (Balingen-Tieringen section, Late Oxfordian, south Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 179:7398.CrossRefGoogle Scholar
Podlaha, O. G., Mutterlose, J., and Veizer, J.. 1998. Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions. American Journal of Science 298:324347.CrossRefGoogle Scholar
Price, G. D. 1999. The evidence and implications of polar ice during the Mesozoic. Earth-Science Reviews 48:183210.CrossRefGoogle Scholar
Price, G. D. 2010. Carbon-isotope stratigraphy and temperature change during the Early Middle Jurassic (Toarcian-Aalenian), Raasay, Scotland, UK. Palaeogeography, Palaeoclimatology, Palaeoecology 285:255263.CrossRefGoogle Scholar
Price, G. D., Valdes, P. J., and Sellwood, B. W.. 1998. A comparison of GCM simulated Cretaceous ‘greenhouse’ and ‘icehouse’ climates: implications for the sedimentary record. Palaeogeography, Palaeoclimatology, Palaeoecology 142:123138.CrossRefGoogle Scholar
Raucsik, B., and Varga, A.. 2008. Climato-environmental controls on clay mineralogy of the Hettangian-Bajocian successions of the Mecsek Mountains, Hungary: an evidence for extreme continental weathering during the early Toarcian oceanic anoxic event. Palaeogeography, Palaeoclimatology, Palaeoecology 265:113.CrossRefGoogle Scholar
Raucsik, B., Demény, A., Borbély Kiss, I., and Szabó, G.. 2001. Monsoon-like climate during the Bajocian. Clay mineralogical and geochemical study on a limestone/marl alternation (Komló Calcareous Marl Formation, Mecsek Mountains, Southern Hungary). Hantkeniana 3:149176.Google Scholar
Rogov, M. A., and Zakharov, V. A.. 2010. Jurassic and Lower Cretaceous glendonites occurrences and their implication for Arctic paleoclimatic reconstructions and stratigraphy. Earth Science Frontiers 17(Special Issue): 345347.Google Scholar
Roth, P. H. 1987. Mesozoic calcareous nannofossil evolution: relation to paleoceanographic events. Paleoceanography 2:601611.CrossRefGoogle Scholar
Ruget-Perrot, C. 1961. Etudes stratigraphiques sur le Dogger et le Malm inférieur du Portugal au Nord du Tage. Memoria Serviços Geologicos de Portugal 7:1197.Google Scholar
Solignac, S., de Vernal, A., and Giraudeau, J.. 2008. Comparison of coccolith and dinocyst assemblages in the northern North Atlantic: how well do they relate with surface hydrography? Marine Micropaleontology 68:115135.CrossRefGoogle Scholar
Suchéras-Marx, B., Guihou, A., Giraud, F., Lécuyer, C., Allemand, P., Pittet, B., and Mattioli, E.. 2012. Impact of the Middle Jurassic diversification of Watznaueria (coccolith-bearing algae) on the carbon cycle and δ13C of bulk marine carbonates. Global and Planetary Change 86–87:92100.CrossRefGoogle Scholar
Suchéras-Marx, B., Giraud, F., Fernandez, V., Pittet, B., Lécuyer, C., Olivero, D., and Mattioli, E.. 2013. Duration of the early Bajocian and the associated δ13C positive excursion based on cyclostratigraphy. Journal of the Geological Society, London 170:107118.CrossRefGoogle Scholar
Surlyk, F. 2003. The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting. Geological Survey of Denmark and Greenland Bulletin 1:659722.CrossRefGoogle Scholar
Thomsen, E. 1989. Seasonal variation in boreal Early Cretaceous calcareous nannofossils. Marine Micropaleontology 15:123152.CrossRefGoogle Scholar
Tiraboschi, D., and Erba, E.. 2010. Calcareous nannofossil biostratigraphy (Upper Bajocian-Lower Bathonian) of the Ravin du Bès section (Bas Auran, Subalpine Basin, SE France): Evolutionary trends of Watznaueria barnesiae and new findings of “Rucinolithus” morphotypes. Geobios 43:5976.CrossRefGoogle Scholar
Vera, J. A. 1988. Evolución de los sistemas de déposito en el margen ibérico de la cordillera Betica. Revista de la Sociedad Geológica de España 1:373391.Google Scholar
Winter, A., and Siesser, W. G.. 1994. Coccolithophores. Cambridge University Press, Cambridge.Google Scholar
Yin, J., Pei, S., Gou, J., and Jiang, G.. 1998. The Middle Jurassic bivalve fauna in the volcanic rock series (Yaiba Formation) of the Lhasa Massif and its paleogeographic significance. Regional Geology of China 17:132136.Google Scholar