Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T13:59:52.809Z Has data issue: false hasContentIssue false

The origin of crocodilian locomotion

Published online by Cambridge University Press:  08 April 2016

J. Michael Parrish*
Affiliation:
University of Colorado Museum, Campus Box 315, Boulder, Colorado 80309

Abstract

The morphology of the tarsi, hindlimbs, and pelves of the earliest crocodilians and their nearest relatives, Hallopus and the “sphenosuchians,” indicates that these animals had adaptations for erect posture. The widespread distribution of apparently homologous adaptations for erect gait among the archosaurs with crocodile-normal tarsi suggests that those structures are plesiomorphic for this group, which comprises the Aetosauria, “rauisuchians,” “sphenosuchians,” Hallopus, and the Crocodylia. Adaptations for erect posture are seen most clearly in the structure of the proximal tarsus (astragalus and calcaneum).

An important implication of this argument is that the most primitive crocodylomorphs, comprising the “protosuchian” crocodiles, the “sphenosuchians,” and Hallopus, had an erect stance and gait. The sprawling stance and associated gait used by modern crocodilians during swimming and upon entering the water can be viewed as secondary adaptations to an aquatic existence. The environments of deposition and faunal associations of “sphenosuchians” and “protosuchian” crocodiles are consistent with primarily terrestrial habits. Living crocodilians have two types of step cycles, sprawling and erect; the sprawling pattern is overprinted onto the inferred ancestral “high-walk,” and onto the gallop sometimes used by juvenile crocodilians.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bonaparte, J. F. 1971. Los tetrápodos del sector Superieur de la Formación Los Colorados, La Rioja, Argentina (Triásico Superior). Opera Lilloana. 22:1183.Google Scholar
Bonaparte, J. F. 1982. The classification of the Thecodontia. Geobios Sp. Mem. 6:99112.CrossRefGoogle Scholar
Bonaparte, J. F. 1984. Locomotion in rauisuchid thecodonts. J. Vert. Paleo. 3:210218.CrossRefGoogle Scholar
Brinkman, D. 1980. The hind limb step cycle of Caiman sclerops and the mechanics of the crocodilian tarsus and metatarsus. Can. J. Zool. 58:21872200.Google Scholar
Brinkman, D. 1981a. The origin of the crocodiloid tarsi and the interrelationships of thecodontian archosaurs. Breviora. 464:123.Google Scholar
Brinkman, D. 1981b. The hind limb step cycle of lguana and primitive reptiles. J. Zool. 181:91103.CrossRefGoogle Scholar
Broom, R. 1927. On Sphenosuchus, and the origin of the crocodiles. Proc. Zool. Soc. Lond. 1927:359370.Google Scholar
Buffetaut, E. 1979. The evolution of the crocodilians. Sci. Am. 241(4):130145.Google Scholar
Buffetaut, E. 1982. Radiation évolutive, paléoécologie, et biogéographie des crocodiliens Mésosuchiens. Mém. Soc. Géol. France. 142:188.Google Scholar
Busbey, A. B. B. 1986. New material of Sebecus cf. huilensis (Crocodilia: Sebecosuchidae) from the Miocene La Venta Formation of Colombia. Jour. Vert. Paleo. 6:2027.Google Scholar
Busbey, A. B. B. and Gow, C. 1984. A new protosuchian crocodile from the Upper Triassic Elliot Formation of South Africa. Paleontologica Africana. 25:127149.Google Scholar
Charig, A. J. 1972. The evolution of the archosaur pelvis and hindlimb, an explanation in functional terms. Pp. 121151. In: Joysey, K. A. and Kemp, T. S., eds. Studies in Vertebrate Evolution. Oliver and Boyd; Edinburgh.Google Scholar
Chatterjee, S. 1978. A primitive parasuchid (phytosaur) from the Upper Triassic Maleri Formation of India. Palaeontology. 21:83127.Google Scholar
Chatterjee, S. 1982. Phylogeny and classification of thecodontian reptiles. Nature. 295:317320.Google Scholar
Chatterjee, S. 1985. Postosuchus, a new thecodontian reptile from the Triassic of Texas and the origin of tyrannosaurs. Phil. Trans. Roy. Soc. Lond. (B). 309:395460.Google Scholar
Clark, J. M. and Fastovsky, D. E. 1986. Vertebrate biostratigraphy of the Glen Canyon Group in northern Arizona. Pp. 285301. In: Padian, K., ed. The Beginning of the Age of Dinosaurs. Cambridge University Press; New York.Google Scholar
Colbert, E. H. 1952. A pseudosuchian reptile from Arizona. Bull. Am. Nat. Hist. 10:561592.Google Scholar
Colbert, E. H. 1961. The Triassic reptile, Poposaurus. Fieldiana, Geology. 14:5978.Google Scholar
Colbert, E. H. and Mook, C. C. 1951. The ancestral crocodilian Protosuchus. Bull. Am. Mus. Nat. Hist. 97:143182.Google Scholar
Cott, H. B. 1961. Scientific results of an enquiry into the ecology and economic status of the Nile Crocodile (Crocodylus niloticus) in Uganda, Northern Rhodesia. Trans. Zool. Soc. Lond. 29:211356.CrossRefGoogle Scholar
Cruickshank, A. R. I. 1972. The proterosuchian thecodonts. Pp. 89120. In: Joysey, K. A. and Kemp, T. S., eds. Studies in Vertebrate Evolution. Oliver and Boyd; Edinburgh.Google Scholar
Cruickshank, A. R. I. 1979. The ankle joint in some early archosaurs. S. African Journ. Sci. 77:307308.Google Scholar
Cruickshank, A. R. I. and Benton, M.J. 1985. Archosaur ankles and the relationships of the thecodontian and dinosaurian reptiles. Nature. 317:715717.CrossRefGoogle Scholar
Crush, P. 1984. A late Upper Triassic sphenosuchid crocodile from Wales. Palaeontology. 27:133157.Google Scholar
Ewer, R. F. 1965. The anatomy of the thecodont reptile Euparkeria capensis Broom. Phil. Trans. Roy. Soc. Lond. (B). 248:379435.Google Scholar
Frey, E. 1984. Aspects of the biomechanics of terrestrial locomotion in crocodiles. Pp. 9398. In: Reif, W. E. and Westphal, F., eds. Third Symposium on Mesozoic Terrestrial Ecosystems, Short Papers. Attempto; Tübingen.Google Scholar
Frey, E. 1985. Biomechanics of terrestrial locomotion in crocodiles. Pp. 145167. In: Konstruktionsprinzipien lebender un ausgestorbener Reptilien. SFB 30; Universität Stuttgart/Universität Tübingen.Google Scholar
Galton, P. M. 1971. The prosauropod dinosaur Ammosaurus, the crocodile Protosuchus, and their bearing on the age of the Navajo Sandstone in Northern Arizona. J. Paleontol. 45:781795.Google Scholar
Gauthier, J. 1984. A cladistic analysis of the higher systematic categories of Diapsida. 564 pp. Ph.D. Dissertation, U. of California, Berkeley.Google Scholar
Gauthier, J. 1986. Saurischian monophyly and the origin of birds. Mem. Calif. Acad. Sci. 8:155.Google Scholar
Haughton, S. H. 1924. Fauna and stratigraphy of the Stormberg Series. Ann. S. Afr. Mus. 12:323427.Google Scholar
Hecht, M. K. and Tarsitano, S. F. 1984. The tarsus and metatarsus of Protosuchus and its phyletic implications. Pp. 332349. In: Rhodin, A. G.J. and Miyata, K., eds. Advances in Herpetology and Evolutionary Biology. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Huene, F. F. von. 1921. Neuer Pseudosuchier und Coelurosaurier aus dem Württembergischen Keuper. Acta Zool. 2:324403.Google Scholar
Huene, F. F. von. 1925. Die bedeutung der Sphenosuchus-Gruppe fúr den Úrsprung der Krokodile. Zeitschrift für Induktive Abstammungs- und Vererbungslehre. 38:307322.Google Scholar
Jacobs, L. L. and Murry, P. A. 1980. The Triassic vertebrate community of the Triassic Chinle Formation near St. John's, Arizona. Pp. 5571. In: Jacobs, L. L., ed. Aspects of Vertebrate History. Mus. North. Ariz. Press; Flagstaff, Arizona.Google Scholar
Kermack, K. A. 1956. An ancestral crocodile from South Wales. Proc. Linn. Soc. Lond. 166:12.Google Scholar
Kitching, J. W. and Raath, M. A. 1984. Fossils from the Elliot and Clarens formations (Karoo Sequence) of the northeastern cape, Orange Free State and Lesotho, and a suggested biozonation based on tetrapods. Paleontologica Africana. 25:111125.Google Scholar
Krebs, B. 1963. Bau und Funktion des Tarsus eines Pseudosuchiers aus der Trias des Monte San Giorgio (Kanton Tessin, Schweiz). Paläont. Zeitschr. 37:8895.CrossRefGoogle Scholar
Krebs, B. 1976. Pseudosuchia. Pp. 4098. Handbuch der Paläoherpetologie. Teil 13. Pseudosuchia. Fischer Verlag; Stuttgart.Google Scholar
Lull, R. S. 1953. Triassic Life of the Connecticut Valley. Conn. State Geol. and Nat. Hist. Survey Bull. 81:1336.Google Scholar
Nash, D. 1968. A crocodile from the Upper Triassic of Lesotho. J. Zool. 156:163179.Google Scholar
Nash, D. 1975. The morphology and relationships of a crocodile, Orthosuchus stormbergi, from the Upper Triassic of Lesotho. Ann. S. Afr. Mus. 67:227329.Google Scholar
Olsen, P. E. 1980. A comparison of the vertebrate assemblages from the Newark and Hartford basins (early Mesozoic, Newark Supergroup) of eastern North America. Pp. 3554. In: Jacobs, L. L., ed. Aspects of Vertebrate History. Mus. North. Ariz. Press; Flagstaff, Arizona.Google Scholar
Parrish, J. M. 1983. Locomotor adaptations in the hindlimb and pelvis of the Thecodontia (Reptilia: Archosauria). 793 pp. Ph.D. Thesis, University of Chicago.Google Scholar
Parrish, J. M. 1984. Locomotor grades in the Thecodontia. Pp. 169174. In: Reif, W. E. and Westphal, F., eds. Third Symposium on Mesozoic Terrestrial Ecosystems, Short Papers. Attempto; Tübingen.Google Scholar
Parrish, J. M. 1986a. Locomotor adaptations in the hindlimb and pelvis of the Thecodontia. Hunteria. 1(2):136.Google Scholar
Parrish, J. M. 1986b. Structure and function of the tarsus in the phytosaurs (Reptilia: Archosauria). Pp. 3543. In: Padian, K., ed. The Beginning of the Age of Dinosaurs. Cambridge University Press; New York.Google Scholar
Paul, G. S. 1984. The archosaurs: a phylogenetic study. Pp. 175180. In: Reif, W. E. and Westphal, F., eds. Third Symposium on Mesozoic Terrestrial Ecosystems, Short Papers. Attempto; Tübingen.Google Scholar
Raath, M. A. 1981. A protosuchid crocodilian from the Forest Sandstone (Upper Karoo) of Zimbabwe. Paleontologica Africana. 24:169174.Google Scholar
Rewcastle, S. 1980. Form and function in lacertilian knee and mesotarsal joints: a contribution to the analysis of sprawling locomotion. J. Zool. 191:147170.Google Scholar
Robinson, P. L. 1957. The Mesozoic fissures of the Bristol Channel area and their vertebrate fauna. Zool. Jour. Linn. Soc. 43:260282.Google Scholar
Romer, A. S. 1956. The Osteology of the Reptilia. 772 pp. University of Chicago Press; Chicago.Google Scholar
Ross, F. D. and Meyer, G. C. 1984. On the dorsal armor of the Crocodilia. Pp. 305331. In: Rhodin, A. G. J. and Miyata, K., eds. Advances in Herpetology and Evolutionary Biology. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Rudwick, M. J. S. 1964. The inference of function from structure in fossils. Brit. J. Phil. Sci. 15:2740.Google Scholar
Schaeffer, B. 1941. The morphological and functional evolution of the tarsus in amphibians and reptiles. Bull. Am. Mus. Nat. Hist. 78:395472.Google Scholar
Simmons, D. 1965. The non-therapsid reptiles of the Lufeng Basin, Yunnan, China. Fieldiana, Geology. 15:193.Google Scholar
Steel, R. 1973. Handbuch der Paläoherpetologie. Teil 16. Crocodylia. 116 pp. Fischer Verlag; Stuttgart.Google Scholar
Szalay, F. 1984. Arboreality: is it homologous in metatherian and eutherian mammals? Evol. Biol. 18:215258.Google Scholar
Thulborn, R. A. 1980. The ankle joints of archosaurs. Alcheringa. 4:261274.CrossRefGoogle Scholar
Tucker, M. E. and Benton, M. J. 1982. Triassic environments, climates and reptile evolution. Palaeogeography, Palaeoclimatology, Palaeoecology. 40:361379.Google Scholar
Van Hoepen, E. C. N. 1915. Contributions to the knowledge of the Karoo Formation. 4. A new pseudosuchian from the Orange Free State. Ann. Transvaal Mus. 5:8387.Google Scholar
Walker, A. D. 1961. Triassic reptiles from the Elgin Area: Stagonolepis, Dasygnathus and their allies. Phil. Trans. Roy. Soc. Lond. (B). 244:103204.Google Scholar
Walker, A. D. 1968. Protosuchus, Proterochampsa, and the origin of phytosaurs and crocodiles. Geol. Mag. 105:114.CrossRefGoogle Scholar
Walker, A. D. 1970. A revision of the Jurassic reptile Hallopus victor (Marsh). Phil. Trans. Roy. Soc. Lond. (B). 257:323372.Google Scholar
Walker, A. D. 1972. New light on the origins of birds and crocodiles. Nature. 237:257263.Google Scholar
Walker, W. F. 1973. The locomotor apparatus of turtles. Pp. 1100. In: Gans, C., ed. Biology of the Reptilia, vol. 4. Academic Press; New York.Google Scholar
Webb, G. J. W. and Gans, C. 1982. Galloping in Crocodylus johnstoni, a reflection of terrestrial activity. Rec. Austr. Mus. 34:607618.Google Scholar
Whetstone, K. N. and Whybrow, P. J. 1983. A cursorial crocodilian from the Triassic of Lesotho (Basutoland), southern Africa. Occ. Papers Mus. Nat. Hist. U. Kansas. 106:137.Google Scholar
Zug, G. 1974. Crocodilian galloping, a unique gait for reptiles. Copeia. 1974:550552.CrossRefGoogle Scholar