Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:21:12.392Z Has data issue: false hasContentIssue false

Ontogeny in the steinmanellines (Bivalvia: Trigoniida): an intra- and interspecific appraisal using the Early Cretaceous faunas from the Neuquén Basin as a case study

Published online by Cambridge University Press:  21 October 2021

Pablo S. Milla Carmona*
Affiliation:
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN, UBA-CONICET), Pabellón II, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina. E-mail: [email protected], [email protected]
Dario G. Lazo
Affiliation:
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN, UBA-CONICET), Pabellón II, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina. E-mail: [email protected], [email protected]
Ignacio M. Soto
Affiliation:
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, UBA-CONICET), Pabellón II, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina. E-mail: [email protected]
*
*Corresponding author.

Abstract

Despite the paleontological relevance and paleobiological interest of trigoniid bivalves, our knowledge of their ontogeny—an aspect of crucial evolutionary importance—remains limited. Here, we assess the intra- and interspecific ontogenetic variations exhibited by the genus Steinmanella Crickmay (Myophorellidae: Steinmanellinae) during the early Valanginian–late Hauterivian of Argentina and explore some of their implications. The (ontogenetic) allometric trajectories of seven species recognized for this interval were estimated from longitudinal data using 3D geometric morphometrics, segmented regressions, and model selection tools, and then compared using trajectory analysis and allometric spaces. Our results show that within-species shell shape variation describes biphasic ontogenetic trajectories, decoupled from ontogenetic changes shown by sculpture, with a gradual decay in magnitude as ontogeny progresses. The modes of change characterizing each phase (crescentic growth and anteroposterior elongation, respectively) are conserved across species, thus representing a feature of Steinmanella ontogeny; its evolutionary origin is inferred to be a consequence of the rate modification and allometric repatterning of the ancestral ontogeny. Among species, trajectories are more variable during early ontogenetic stages, becoming increasingly conservative at later stages. Trajectories’ general orientation allows recognition of two stratigraphically consecutive groups of species, hinting at a potentially higher genus-level diversity in the studied interval. In terms of functional morphology, juveniles had a morphology more suited for active burrowing than adults, whose features are associated with a sedentary lifestyle. The characteristic disparity of trigoniids could be related to the existence of an ontogenetic period of greater shell malleability betrayed by the presence of crescentic shape change.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerly, S. C. 1989. Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology 15:147164.CrossRefGoogle Scholar
Adams, D. C., and Nistri, A.. 2010. Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evolutionary Biology 10:110.CrossRefGoogle Scholar
Adams, D. C., Collyer, M. L., and Kaliontzopoulou, A.. 2019. geomorph: software for geometric morphometric analyses, R package version 3.1.0. https://cran.r-project.org/package=geomorph, accessed 10 June 2021.Google Scholar
Aguirre-Urreta, M. B., and Rawson, P. F.. 2012. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: a new heteromorph fauna from the latemost Agrio Formation. Cretaceous Research 35:208216.CrossRefGoogle Scholar
Aguirre-Urreta, M. B., Rawson, P. F., Concheyro, G. A., Bown, P. R., and Ottone, E. G.. 2005. Lower Cretaceous (Berriasian–Aptian) biostratigraphy of the Neuquén Basin. In Veiga, G. D., Spalletti, L. A., Howell, J. A., and Schwarz, E., eds. The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geological Society of London Special Publication 252:5781.Google Scholar
Aguirre-Urreta, M. B., Mourgues, F. A., Rawson, P. F., Bulot, L. G., and Jaillard, E.. 2007. The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geological Journal 42:143173.CrossRefGoogle Scholar
Aguirre-Urreta, M. B., Price, G. D., Ruffell, A. H., Lazo, D. G., Kalin, R. M., Ogle, N., and Rawson, P. F.. 2008. Southern Hemisphere Early Cretaceous (Valanginian–early Barremian) carbon and oxygen isotope curves from the Neuquen Basin, Argentina. Cretaceous Research 29:8799.CrossRefGoogle Scholar
Aguirre-Urreta, M. B., Lazo, D. G., Griffin, M., Vennari, V., Parras, A. M., Cataldo, C., Garberoglio, R., and Luci, L.. 2011. Megainvertebrados del Cretácico y su importancia bioestratigráfica. Pp. 465488 in Leanza, H. A., Arregui, C., and Danieli, J. C., eds. Relatorio del XVIII Congreso Geológico Argentino: geología y recursos naturales de la Provincia del Neuquén. Asociación Geológica Agentina, Buenos Aires, Argentina.Google Scholar
Akima, H., and Gebhardt, A.. 2016. akima: interpolation of irregularly and regularly spaced data, R package version 0.6-2. https://cran.r-project.org/package=akima, accessed 10 June 2021.Google Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B.. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296317.CrossRefGoogle Scholar
Anderson, D. R. 2008. Model based inference in the life sciences: a primer on evidence. Springer Science and Business Media, Fort Collins, Colo.CrossRefGoogle Scholar
Bayle, E. 1878. Explication de la carte géologique de la France; Atlas, première partie. Fossiles principaux des terrains. Imprimerie Nationale, Paris.Google Scholar
Bookstein, F. L. 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science 1:181242.Google Scholar
Camacho, H. H., and Olivero, E. B.. 1985. El género Steinmanella Crickmay, 1930 (Bivalvia, Trigoniidae) en el Cretácico Inferior del sudoeste gondwánico. Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales 37:4162.Google Scholar
Carter, J. G., Altaba, C. R., Anderson, L. C., Araujo, R., Biakov, A. S., Bogan, A. E., Campbell, D. C., Campbell, M., Jin-Hua, C., Cope, J. C. W., Delvene, G., Dijkstra, H. H., Zong-Jie, F., Gardner, R. N., Gavrilova, V. A., Goncharova, I. A., Harries, P. J., Hartman, J. H., Hautmann, M., Hoeh, W. R., Hylleberg, J., Bao-Yu, J., Johnston, P., Kirkendale, L., Kleemann, K., Koppka, J., Kříž, J., Machado, D., Malchus, N., Márquez-Aliaga, A., Masse, J. P., McRoberts, C. A., Middelfart, P. U., Mitchell, S., Nevesskaja, L. A., Özer, S., Pojeta, J. Jr., Polubotko, I. V., Pons, J. M., Popov, S., Sánchez, T., Sartori, A. F., Scott, R. W., Sey, I. I., Signorelli, J. H., Silantiev, V. V., Skelton, P. W., Steuber, T., Waterhouse, J. B., Wingard, G. L., and Yancey, T.. 2011. A synoptical classification of the Bivalvia (Mollusca). Paleontological Contributions 4:148.Google Scholar
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.. 2008. Meshlab: an open source mesh processing tool. In Proceedings of the 2008 Eurographics Italian chapter conference.Google Scholar
Collins, K. S., Crampton, J. S., Neil, H. L., Smith, E. G., Gazley, M. F., and Hannah, M.. 2016. Anchors and snorkels: heterochrony, development and form in functionally constrained fossil crassatellid bivalves. Paleobiology 42:305316.CrossRefGoogle Scholar
Cooper, M. R. 1991. Lower Cretaceous Trigonioida (Mollusca, Bivalvia) from the Algoa Basin, with a revised classification of the order. Annals of the South African Museum 100:152.Google Scholar
Cooper, M. R., and Leanza, H. A.. 2017. On the Steinmanellidae (Bivalvia: Myophorelloidea); their palaeo-biogeography, evolution and classification. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 285:313335.CrossRefGoogle Scholar
Cossmann, M. 1912. Sur l'evolution des trigonies. Annlas Paleéontologie 7:96–85.Google Scholar
Cox, L. R. 1969. Superfamily Trigoniacea Lamarck, 1819. Pp. N471N489 in Mollusca 6, Vol. 1. Bivalvia. Part N of R. C. Moore, ed. Treatise on Invertebrate Paleontology. Geological Society of America, New York, and University of Kansas Press, Lawrence.Google Scholar
Crampton, J. S., and Maxwell, P. A.. 2000. Size: all it's shaped up to be? Evolution of shape through the lifespan of the Cenozoic bivalve Spissatella (Crassatellidae). Geological Society of London Special Publication 177:399423.CrossRefGoogle Scholar
Crickmay, C. H. 1930. Fossils from Harrison Lake area, British Columbia. National Museum of Canada Bulletin 63:3366.Google Scholar
Dall, W. H. 1889. On the hinge of pelecypods and its development, with an attempt toward a better subdivision of the group. American Journal of Science and Arts, series 3, 38:445462.Google Scholar
Darragh, T. A. 1986. The Cenozoic Trigoniidae of Australia. Alcheringa 10:134.CrossRefGoogle Scholar
De Baets, K., Klug, C., and Monnet, C.. 2013. Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:7594.CrossRefGoogle Scholar
Dinno, A. 2018. paran: Horn's test of principal components/factors, R package version 1.5.2. https://CRAN.R-project.org/package=paran, accessed 10 June 2021.Google Scholar
Dryden, I. L. 2019. shapes: statistical shape analysis, R package version 1.2.5. https://CRAN.R-project.org/package=shapes, accessed 10 June 2021.Google Scholar
Echevarría, J. 2014. Ontogeny and autecology of an Early Cretaceous trigoniide bivalve from Neuquén Basin, Argentina. Acta Palaeontologica Polonica 59:407420.Google Scholar
Echevarría, J. 2016. Ontogeny and evolution within the Myophorellidae (Bivalvia): paedomorphic trends. Geobios, 49:177189.CrossRefGoogle Scholar
Francis, A. O., and Hallam, A.. 2003. Ecology and evolution of Jurassic trigoniid bivalves in Europe. Lethaia 36:287304.CrossRefGoogle Scholar
Gerber, S., Eble, G. J., and Neige, P.. 2008. Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 62:14501457.CrossRefGoogle ScholarPubMed
Goodall, C. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society, series B (Methodological), 53: 285339.CrossRefGoogle Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Harvard University Press, Cambridge, Mass.Google Scholar
Gould, S. J. 2002. The Structure of evolutionary theory. Harvard University Press, Cambridge, Mass.Google Scholar
Gower, J. C. 1975. Generalized procrustes analysis. Psychometrika 40:3351.CrossRefGoogle Scholar
Guler, M. V., Lazo, D. G., Pazos, P. J., Borel, C. M., Ottone, E. G., Tyson, R. V., Cesaretti, N., and Aguirre-Urreta, M. B.. 2013. Palynofacies analysis and palynology of the Agua de la Mula Member (Agrio Formation) in a sequence stratigraphy framework, Lower Cretaceous, Neuquén Basin, Argentina. Cretaceous Research 41:6581.CrossRefGoogle Scholar
Gunz, P., Mitteroecker, P., and Bookstein, F. L. 2005. Semilandmarks in three dimensions. Pp. 7398 in Slice, D. E., ed. Modern morphometrics in physical anthropology. Springer, Boston, Mass.CrossRefGoogle Scholar
Hayami, I., and Hosoda, I.. 1988. Fortipecten takahashii, a reclining pectinid from the Pliocene of north Japan. Palaeontology 31:419444.Google Scholar
Head, J. J., and Polly, P. D.. 2015. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature 520:8689.CrossRefGoogle ScholarPubMed
Howell, J. A., Schwarz, E., Spalletti, L. A., and Veiga, G. D.. 2005. The Neuquen Basin: an overview. In Veiga, G. D., Spalletti, L. A., Howell, J. A., and Schwarz, E., eds. The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geological Society of London Special Publication 252:114.Google Scholar
Jones, D. S., and Gould, S. J.. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology 25:158187.CrossRefGoogle Scholar
Klingenberg, C. P., Neuenschwander, B. E., and Flury, B. D.. 1996. Ontogeny and individual variation: analysis of patterned covariance matrices with common principal components. Systematic Biology 45:135150.CrossRefGoogle Scholar
Kluge, A. G., and Strauss, R. E.. 1985. Ontogeny and systematics. Annual Review of Ecology and Systematics 16:247268.CrossRefGoogle Scholar
Kobayashi, T. 1954. Studies on the Jurassic trigonians from Japan. Part 1. Preliminary notes. Japanese Journal of Geology and Geography 24:6180.Google Scholar
Lazo, D. G. 2003. The genus Steinmanella (Bivalvia, Trigonioida) in the Lower Member of the Agrio Formation (Lower Cretaceous), Neuquén Basin, Argentina. Journal of Paleontology 77:10691085.2.0.CO;2>CrossRefGoogle Scholar
Lazo, D. G. 2006. Análisis tafonómico e inferencia del grado de mezcla temporal y espacial de la macrofauna del Miembro Pilmatué de la Formación Agrio, Cretácico Inferior de cuenca Neuquina, Argentina. Ameghiniana 43:311326.Google Scholar
Lazo, D. G., and Luci, L.. 2013. Revision of Valanginian Steinmanellinae bivalves from the Neuquén Basin, west-central Argentina, and their biostratigraphic implications. Cretaceous Research 45:6075.CrossRefGoogle Scholar
Lazo, D. G., Aguirre-Urreta, M. B., Price, G. D., Rawson, P. F., Ruffell, A. H., and Ogle, N.. 2008. Palaeosalinity variations in the Early Cretaceous of the Neuquén Basin, Argentina: evidence from oxygen isotopes and palaeoecological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 260:477493.CrossRefGoogle Scholar
Lazo, D. G., Concheyro, G. A., Ottone, E. G., Guler, M. V., and Aguirre-Urreta, M. B.. 2009. Bioestratigrafía integrada de la Formación Agrio en su localidad tipo, Cretácico Temprano de Cuenca Neuquina. Revista de la Asociación Geológica Argentina 65:322341.Google Scholar
Leanza, H. A. 1981. Una nueva especie de Myophorella (Trigoniidae-Bivalvia) del Cretácico Inferior de Neuquén, Argentina. Ameghiniana 18:19.Google Scholar
Leanza, H. A. 1993. Jurassic and Cretaceous trigoniid bivalves from west-central Argentina. Bulletins of American Paleontology 105:195.Google Scholar
Leanza, H. A. 1998. Una nueva especie de Steinmanella Crickmay (Bivalvia, Trigonioida) del Cretácico Inferior de la Cuenca Neuquina, Argentina. Revista Geológica de Chile 25:5767.CrossRefGoogle Scholar
Leanza, H. A., and Garate Zubillaga, J. I.. 1987. Fauna de trigonias (Bivalvia) del Jurásico y Cretácico Inferior de la provincia del Neuquén, Argentina, conservadas en el Museo Juan Olsacher de Zapala. Pp. 201255 in Volkheimer, W., ed. Bioestratigrafía de los sistemas regionales del Jurásico y Cretácico de América del Sur. Comité Sudamericano del Jurásico y Cretácico, Mendoza, Argentina.Google Scholar
Leanza, H. A., Arregui, C., and Danieli, J. C.. 2011a. Relatorio del XVIII Congreso Geológico Argentino: geología y recursos naturales de la Provincia del Neuquén. Asociación Geológica Agentina, Buenos Aires, Argentina.Google Scholar
Leanza, H. A., Sattler, F., Martinez, R., and Carbone, O.. 2011b. La Formación Vaca Muerta y equivalentes (Jurásico Tardío–Cretácico Temprano) en la Cuenca Neuquina. Pp. 113129 in Leanza, H. A., Arregui, C., and Danieli, J. C., eds. Relatorio del XVIII Congreso Geológico Argentino: geología y recursos naturales de la Provincia del Neuquén. Asociación Geológica Agentina, Buenos Aires, Argentina.Google Scholar
López-Martínez, R., Aguirre-Urreta, M. B., Lescano, M., Concheyro, G. A., Vennari, V., and Ramos, V. A.. 2017. Tethyan calpionellids in the Neuquén Basin (Argentine Andes), their significance in defining the Jurassic/Cretaceous boundary and pathways for Tethyan-eastern Pacific connections. Journal of South American Earth Sciences 78:116125.CrossRefGoogle Scholar
Luci, L. 2010. Encrusting patterns and life habit on Mesozoic trigonioids: a case study of Steinmanella quintucoensis (Weaver) from the Early Cretaceous of Argentina. Lethaia 43:529544.CrossRefGoogle Scholar
Luci, L., and Lazo, D. G.. 2012. The genus Steinmanella Crickmay (Bivalvia) in the transition between the Vaca Muerta and Mulichinco formations, early Valanginian, Neuquén Basin, Argentina. Ameghiniana 49:96117.CrossRefGoogle Scholar
MacLeod, N. 1999. Generalizing and extending the eigenshape method of shape visualization and analysis. Paleobiology 25:107138.Google Scholar
MacLeod, N. 2009. Form and shape models. Palaeontological Association Newsletter 72:1427.Google Scholar
Márquez, F., Amoroso, R., Sainz, M. F. G., and Van der Molen, S.. 2010. Shell morphology changes in the scallop Aequipecten tehuelchus during its life span: a geometric morphometric approach. Aquatic Biology 11:149155.CrossRefGoogle Scholar
McNamara, K. J., and McKinney, M. L.. 2005. Heterochrony, disparity, and macroevolution. Paleobiology 31:1726.CrossRefGoogle Scholar
Milla Carmona, P. S. M., Lazo, D. G., and Soto, I. M.. 2017. Taxonomy of the bivalve Ptychomya in the Lower Cretaceous of the Neuquén Basin (west-central Argentina). Papers in Palaeontology, 3:219240.CrossRefGoogle Scholar
Milla Carmona, P. S. M., Lazo, D. G., and Soto, I. M.. 2018. Morphological evolution of the bivalve Ptychomya through the Lower Cretaceous of Argentina. Paleobiology 44:101117.CrossRefGoogle Scholar
Mitteroecker, P. 2009. The developmental basis of variational modularity: insights from quantitative genetics, morphometrics, and developmental biology. Evolutionary Biology 36:377385.CrossRefGoogle Scholar
Monnet, C., Bucher, H., Guex, J., and Wasmer, M.. 2012. Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope's rule. Palaeontology 55:87107.CrossRefGoogle Scholar
Monteiro, L. R. 2013. Morphometrics and the comparative method: studying the evolution of biological shape. Hystrix, the Italian Journal of Mammalogy 24:2532.Google Scholar
Newell, N. D., and Boyd, D. W.. 1975. Parallel evolution in early Trigoniacean bivalves. Bulletin of the American Museum of Natural History 154:5786.Google Scholar
Parsons, K. J., Skúlason, S., and Ferguson, M.. 2010. Morphological variation over ontogeny and environments in resource polymorphic arctic charr (Salvelinus alpinus). Evolution and Development 12:246257.CrossRefGoogle Scholar
Perez, D. E., and Santelli, M. B.. 2018. Allometric shell growth in infaunal burrowing bivalves: examples of the archiheterodonts Claibornicardia paleopatagonica (Ihering, 1903) and Crassatella kokeni Ihering, 1899. PeerJ 6:117.CrossRefGoogle ScholarPubMed
Plate, T., and Heiberger, R.. 2016. abind: combine multidimensional arrays, R package version 1.4-5. https://cran.R-project.Org/package=abind, accessed 10 June 2021.Google Scholar
Ponder, W. F., Lindberg, D. R., and Ponder, J. M.. 2019. Biology and evolution of the Mollusca. CRC Press, Boca Raton, Fla.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 11781190.Google Scholar
R Core Team 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Renaud, S., and Auffray, J. C.. 2013. The direction of main phenotypic variance as a channel to evolution: cases in murine rodents. Hystrix, the Italian Journal of Mammalogy 24:8593.Google Scholar
Riccardi, A. C., Leanza, H. A., Damborenea, S. E., Manceñido, M. O., Ballent, S. C., and Zeiss, A.. 2000. Marine Mesozoic biostratigraphy of the Neuquén Basin. Zeitschrift für Angewandte Geologie 1:102108.Google Scholar
Rice, S. H. 1998. The bio-geometry of mollusc shells. Paleobiology 133149.CrossRefGoogle Scholar
Schlager, S. 2017. Morpho and rvcg–shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. Pp. 217256 in Zheng, G., Li, S., and Szákely, G., eds. Statistical shape and deformation analysis. Academic Press, San Diego, Calif.CrossRefGoogle Scholar
Schneider, S., and Kelly, S. R. A.. 2014. A global perspective of the Trigoniida (Bivalvia: Palaeoheterodonta), with a focus on their Mesozoic and Cenozoic representatives. Fourth International Palaeontological Congress, Abstracts, p. 610.Google Scholar
Schwarz, E., Spalletti, L. A., and Veiga, G. D.. 2011, La Formación Mulichinco (Cretácico Temprano) en la Cuenca Neuquina. Pp. 131144 in Leanza, H. A., Arregui, C., and Danieli, J. C., eds. Relatorio del XVIII Congreso Geológico Argentino: geología y recursos naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, Argentina.Google Scholar
Sheets, H. D., and Zelditch, M. L.. 2013. Studying ontogenetic trajectories using resampling methods and landmark data. Hystrix, the Italian Journal of Mammalogy 24:6773.Google Scholar
Smith, A. G., Smith, D. G., and Funnell, B. M.. 2004. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge.Google Scholar
Spalletti, L. A., Veiga, G. D., and Schwarz, E.. 2011. La Formación Agrio (Cretácico Temprano) en la Cuenca Neuquina. Pp. 145160 in Leanza, H. A., Arregui, C., and Danieli, J. C., eds. Relatorio del XVIII Congreso Geológico Argentino: geología y recursos naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, Argentina.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125:1296.CrossRefGoogle Scholar
Stanley, S. M. 1975. Why clams have the shape they have: an experimental analysis of burrowing. Paleobiology 1:4858.CrossRefGoogle Scholar
Stanley, S. M. 1977. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology 20:869899.Google Scholar
Stanley, S. M. 1978. Aspects of the adaptive morphology and evolution of the Trigoniidae. Philosophical Transactions of the Royal Society of London B 284:247258.Google Scholar
Steinmann, G. 1881. Zur kenntniss der Jura- und kreideformation von Caracoles (Bolivia). Neues Jahrbuch fur Mineralogie, Geologie und Palaeontologie, I:239301.Google Scholar
Steinmann, G. 1882. Die gruppe der Trigoniae pseudo-quadratae. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie I:219228.Google Scholar
Ubukata, T. 2003. Pattern of growth rate around aperture and shell form in Bivalvia: a theoretical morphological study. Paleobiology 29:480491.2.0.CO;2>CrossRefGoogle Scholar
Weaver, C. H. 1931. Paleontology of the Jurassic and Cretaceous of west central Argentina. University Washington, Seattle, Memoir 1:1469.Google Scholar
Webster, M., and Sundberg, F. A.. 2020. Nature and significance of intraspecific variation in the early Cambrian oryctocephalid trilobite Oryctocephalites palmeri Sundberg and McCollum, 1997. Journal of Paleontology 94:7098.CrossRefGoogle Scholar
Webster, M., and Zelditch, M. L.. 2005. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology 31:354372.CrossRefGoogle Scholar
Wilbur, K. M., and Owen, G.. 1964. Growth. Pp. 211242 in Wilbur, K. M. and Yonge, C. M., eds. Physiology of Mollusca, Vol. 1. Academic Press, New York.CrossRefGoogle Scholar
Wilson, L. A. 2013. Allometric disparity in rodent evolution. Ecology and Evolution 3:971984.CrossRefGoogle ScholarPubMed
Zelditch, M. L., Sheets, H. D., and Fink, W. L.. 2003. The ontogenetic dynamics of shape disparity. Paleobiology 29:139156.2.0.CO;2>CrossRefGoogle Scholar
Zelditch, M. L., Lundrigan, B. L., and Garland, T. Jr. 2004. Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evolution and Development 6:194206.CrossRefGoogle ScholarPubMed
Zelditch, M. L., Swiderski, D. L., and Sheets, H. D.. 2012. Geometric morphometrics for biologists: a primer, 2nd ed. Academic Press, London, 478.Google Scholar