Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T04:24:16.571Z Has data issue: false hasContentIssue false

On the origin of ammonite sutures

Published online by Cambridge University Press:  08 April 2016

Juan M. García-Ruiz
Affiliation:
Instituto Andaluz de Geología Mediterranea C.S.I.C.—Universidad de Granada, Fuentenueva s/n, Granada 18002, Spain
Antonio Checa
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Fuentenueva s/n, Granada 18002, Spain
Pascual Rivas
Affiliation:
Departamento de Estratigrafía y Paleontología, Universidad de Granada, Fuentenueva s/n, Granada 18002, Spain

Abstract

The origin of ammonite sutures is one of the most interesting open problems in paleontology. Present theories of suture formation deal with function rather than morphogenesis. Here we present a study showing that sutures are scale-invariant. In each of ten different ammonite genera, the ontogenetic sequence of the suture can be characterized by the same fractal dimension. We propose a morphogenetic theory for ammonite sutures that is based on the similarity between sutures and the Saffman-Taylor instability in both fractal characters and physical mechanism.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bayer, U. 1977. Cephalopodensepten, Teil 1: Konstruktions-morphologie des Ammoniten Septums. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 154:290366.Google Scholar
Bayer, U. 1978. Constructional morphology of ammonite septa. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 157:150155.Google Scholar
Bayer, U. 1985. Pattern Recognition Problems in Geology and Paleontology. Springer-Verlag; Berlin.Google Scholar
Borrough, P. A. 1981. Fractal dimensions of landscapes and other environmental data. Nature 204:240242.Google Scholar
Braddy, R. M., and Ball, R. C. 1984. Fractal growth of copper electrodeposits. Nature 309:225229.CrossRefGoogle Scholar
Damiani, G. 1986. Significato funzionalle dell'evoluzione dei setti e delle linee di sutura dei nautiloidi e degli ammonoidi. Pp. 123130. In Pallini, G. (ed.), Fossili, Evoluzione, Ambiente. Tecnoscienza; Roma.Google Scholar
Farin, D., Peleg, S., Yavin, D., and Avnir, D. 1987. Applications and limitations of boundary-line fractal analysis of irregular surfaces. Preprint.Google Scholar
Feder, J. 1988. Fractals. Plenum Press; New York, London.Google Scholar
Henderson, R. A. 1984. A muscle attachment proposal for septal function in Mesozoic ammonites. Palaeontology 27:461486.Google Scholar
Hewitt, R. A., and Westermann, G. E. G. 1987. Function of complexly fluted septa in ammonoid shells. I. Mechanical principles and functional models. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 172:4769.CrossRefGoogle Scholar
Kolb, M., Botet, R., and Jullien, J. 1983. Scaling of kinetically growing clusters. Physical Review Letters 51:11231126.Google Scholar
Kulicki, C., and Mutvei, H. 1988. Functional interpretation of ammonoid septa. Pp. 713718. In Wiedmann, J., and Küllmann, J. (eds.), Cephalopods—Present and Past. Schweizerbart'-sche Verlagsbuchhandlung; Stuttgart, Germany.Google Scholar
Louis, E., Guinea, , and Flores, F. 1985. The fractal nature of fracture. Pp. 177180. In Pietronero, L., and Tosati, E. (eds.), Fractals in Physics. North-Holland; Amsterdam.Google Scholar
Lovejoy, S. 1982. Area-perimeter relation for rain and cloud areas. Science 216:209232.Google Scholar
Mandelbrot, B. B. 1967. How long is the coast of England? Science 155:636638.Google Scholar
Mandelbrot, B. B. 1982. The Fractal Geometry of Nature. W. H. Freeman; New York.Google Scholar
Meakin, P. 1983. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Physical Review Letters 51:11191122.CrossRefGoogle Scholar
Meakin, P. 1988. Simple models for colloidal aggregation, dielectric breakdown and mechanical breakdown patterns. Pp. 174191. In Stanley, E. H., and Ostrowsky, N. (eds.), Random Fluctuations and Pattern Growth. Kluwer; Dordrecht.Google Scholar
Messier, R., and Yehoda, J. 1987. Fractal model for thin film physical structures. Preprint.Google Scholar
Niemeyer, J., Pietronero, L., and Wiesmann, H. J. 1984. Fractal dimension of dielectric breakdown. Physical Review Letters 52:10331036.CrossRefGoogle Scholar
Nittman, J., Daccord, G., and Stanley, H. E. 1985. Fractal growth of viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314:141144.Google Scholar
Pietronero, L. 1987. The fractal structure of the universe: correlation of galaxies and clusters and the average mass density. Physica 144A:257284.CrossRefGoogle Scholar
Raup, D. M., and Stanley, S. M. 1971. Principles of Paleontology. W. H. Freeman and Co.; San Francisco.Google Scholar
Saffman, P. G., and Taylor, G. I. 1958. The penetration of a fluid into a medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London 245:312329.Google Scholar
Schindewolf, O. H. 1961. Studien zur Stammesgeschichte der Ammoniten. Lieferung I. Verlag der Akademie der Wissenschaften und der Literatur in Mainz 1960(10):635743.Google Scholar
Schindewolf, O. H. 1962. Studien zur Stammesgeschichte der Ammoniten. Lieferung II. Verlag der Akademie der Wissenschaften und der Literatur in Mainz 1962(8):426571.Google Scholar
Schindewolf, O. H. 1964. Studien zur Stammesgeschichte der Ammoniten. Lieferung III. Verlag der Akademie der Wissenschaften und der Literatur in Mainz 1963(6):285432.Google Scholar
Schindewolf, O. H. 1965. Studien zur Stammesgeschichte der Ammoniten. Lieferung IV. Verlag der Akademie der Wissenschaften und der Literatur in Mainz 1965(3):137238.Google Scholar
Schindewolf, O. H. 1967. Studien zur Stammesgeschichte der Ammoniten. Lieferung VI. Verlag der Akademie der Wissenschaften und der Literatur in Mainz 1966(8):719808.Google Scholar
Seilacher, A. 1975. Mechanische Simulation und funktionelle Evolution des Ammoniten Septums. Paläontologische Zeitschrift 49:268286.Google Scholar
Seilacher, A. 1988. Why are nautiloid and ammonite sutures so different? Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 177:4169.Google Scholar
Westermann, G. E. G. 1975. Model for origin, function and fabrication of fluted cephalopod septa. Paläontologische Zeitschrift 49:235253.Google Scholar
Wiedmann, J. 1966a. Stammesgeschichte und System der post-triadischen Ammonoideen. Ein Uberblick (1 Teil). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 125:4979.Google Scholar
Wiedmann, J. 1966b. Stammesgeschichte und System der post-triadischen Ammonoideen. Ein Uberblick (2 Teil). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 127:1381.Google Scholar
Wiedmann, J. 1968. Neue Vorstellungen über Stammesgeschichte und System der Kreideammoniten. Proceedings of the 23rd International Geological Congress:93120.Google Scholar
Witten, L. A., and Sanders, L. M. 1983. Diffusion-limited aggregation. Physical Review B 27:56865697.Google Scholar