Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T20:26:03.976Z Has data issue: false hasContentIssue false

Natural clades differ from “random” clades: simulations and analyses

Published online by Cambridge University Press:  08 February 2016

Steven M. Stanley
Affiliation:
Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218
Philip W. Signor III
Affiliation:
Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218
Scott Lidgard
Affiliation:
Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218
Alan F. Karr
Affiliation:
Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, Maryland 21218

Abstract

Using computer simulations and analytic calculations, we have evaluated whether conspicuous expansions and contractions of natural clades may have represented chance fluctuations that occurred while probabilities of speciation and extinction remained equal and constant. Our results differ from those of previous workers, who have not scaled generating parameters empirically at the species level. We have found that the waxing and waning of many real clades have almost certainly resulted from changes in probabilities of speciation and extinction. For some of these changes, likely explanations are evident. The emplacement of adaptive innovations, for example, has at times elevated probability of speciation. We conclude that chance factors have not played a dominant role in producing dramatic changes in standing diversity within speciose higher taxa.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. R. 1979. Differentiation of generic extinction rates among Upper Ordovician—Devonian articulate brachiopods. Paleobiology. 5: 133143.CrossRefGoogle Scholar
Bailey, N. T. J. 1964. The Elements of Stochastic Processes. 249 pp. John Wiley & Sons, Inc.; New York.Google Scholar
Barker, R. T. 1980. Dinosaur heresy—Dinosaur renaissance. pp. 351462. In: Thomas, R. D. K. and Olson, E. C., eds. A Cold Look at the Warm-Blooded Dinosaurs. Am. Assoc. Adv. Sci. Symp. Series.Google Scholar
Boss, K. J. 1971. Critical estimate of the number of Recent Mollusca. Occas. Pap. Mollusca 3: 31135.Google Scholar
Feller, W. 1968. An Introduction to Probability Theory and its Applications. Vol. I. 509 pp. John Wiley & Sons, Inc.; New York.Google Scholar
Fortey, R. A. 1980. Generic longevity in Lower Ordovician trilobites: relation to environment. Paleobiology. 6: 2431.CrossRefGoogle Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M. and Simberloff, D. S. 1977. The shape of evolution: A comparison of real and random clades. Paleobiology. 3: 2340.CrossRefGoogle Scholar
Grant, R. E. 1980. The human face of the brachiopod. J. Paleontol. 54: 499507.Google Scholar
Gregory, J. T. 1955. Vertebrates in the geologic time scale. pp. 593608. In: Poldervaart, A., ed. Crust of the Earth. Geol. Soc. Am. Spec. Pap. 62.Google Scholar
Hansen, T. A. 1978. Larval dispersal and species longevity in Lower Tertiary gastropods. Science. 199: 885887.CrossRefGoogle ScholarPubMed
Harland, W. B. et al., eds. 1967. The Fossil Record. 828 pp. Geol. Soc. London; London.Google Scholar
Jackson, J. B. C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. Am. Nat. 108: 541560.CrossRefGoogle Scholar
Jagers, P. 1975. Branching Processes with Biological Applications. 268 pp. John Wiley & Sons, Inc.; New York.Google Scholar
Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous bivalves. R. Soc. London, Philos. Trans. (B). 284: 277304.Google Scholar
Kendall, D. G. 1948. On the generalized “birth-and-death” process. Ann. Math. Stat. 19: 115.CrossRefGoogle Scholar
Koch, C. F. 1978. Bias in the published fossil record. Paleobiology. 4: 367372.CrossRefGoogle Scholar
Koch, C. F. 1980. Bivalve species duration, areal extent and population size in a Cretaceous Sea. Paleobiology. 6: 184192.CrossRefGoogle Scholar
Lasker, H. R. 1978. The measurement of taxonomic evolution: preservational consequences. Paleobiology. 4: 135149.CrossRefGoogle Scholar
Levinton, J. S. 1974. Trophic group and evolution in bivalve molluscs. Palaeontology. 17: 579585.Google Scholar
Lillegraven, J. A. 1972. Ordinal and familial diversity of Cenozoic mammals. Taxon. 1: 261274.CrossRefGoogle Scholar
Newell, N. D. 1959. The nature of the fossil record. Am. Philos. Soc. Trans. 103: 264285.Google Scholar
Newell, N. D. 1969. Classification of Bivalvia. Pp. N205–N224. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part N, vol. 1. Univ. Kansas Press; Lawrence.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science. 177: 10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1975. Taxonomic survivorship curves and Van Valen's Law. Paleobiology. 1: 8296.CrossRefGoogle Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology. 2: 289297.CrossRefGoogle Scholar
Raup, D. M. 1977. Stochastic models in evolutionary palaeontology. pp. 5978. In: Hallam, A., ed. Patterns of Evolution. Elsevier Sci. Publ. Co.; Amsterdam.Google Scholar
Raup, D. M. 1978. Cohort analysis of generic survivorship. Paleobiology. 4: 115.CrossRefGoogle Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M. and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81: 525542.CrossRefGoogle Scholar
Raup, D. M. and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23: 305322.CrossRefGoogle Scholar
Raup, D. M. and Schopf, T. J. M. 1978. Stochastic Models in Paleontology: A Primer. 124 pp. Course notes for workshop on Species as Particles in Time and Space, held at the U.S. Natl. Mus., Smithsonian Inst., June 5–16, 1978.Google Scholar
Raup, D. M. and Marshall, L. G. 1980. Variation between groups in evolutionary rates: a statistical test of significance. Paleobiology. 6: 923.CrossRefGoogle Scholar
Rensch, B. 1959. Evolution Above the Species Level. 419 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Saul, L. R. 1973. Evidence for the origin of the Mactridae (Bivalvia) in the Cretaceous. Univ. Calif. Publ. Geol. Sci. 97: 151.Google Scholar
Schopf, T. J. M. 1979. Evolving paleontological views on deterministic and stochastic approaches. Paleobiology. 5: 337352.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1975. Stratigraphic biases in the analysis of taxonomic survivorship. Paleobiology. 1: 343355.CrossRefGoogle Scholar
Sepkoski, J. J. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology. 4: 223251.CrossRefGoogle Scholar
Sepkoski, J. J. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5: 222251.Google Scholar
Sheehan, P. M. 1977. Species richness in the Phanerozoic: A reflection of labor by the systematists? Paleobiology. 3: 325328.CrossRefGoogle Scholar
Signor, P. W. III. 1978. Species richness in the Phanerozoic: An analysis of sampling effects. Paleobiology. 4: 394406.CrossRefGoogle Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Simpson, G. G. 1960. The history of life. pp. 117180. In: Tax, S., ed. Evolution after Darwin. Univ. Chicago Press; Chicago.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. J. Paleontol. 42: 214229.Google Scholar
Stanley, S. M. 1970. Relation of Shell Form to Life Habits in the Bivalvia. 296 pp. Geol. Soc. Am. Mem. 125.CrossRefGoogle Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. J. Paleontol. 46: 165212.Google Scholar
Stanley, S. M. 1973. Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals. Syst. Zool. 22: 486506.CrossRefGoogle Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. pp. 209250. In: Hallam, A., ed. Patterns of Evolution. Elsevier Sci. Publ. Co.; Amsterdam.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. 332 pp. W. H. Freeman Co.; San Francisco.Google Scholar
Stanley, S. M., Addicott, W. O. and Chinzei, K. 1980. Lyellian curves: Possibilities and limitations. Geology. 8: 422426.2.0.CO;2>CrossRefGoogle Scholar
Stanley, S. M. and Newman, W. A. 1979. Competitive exclusion in evolutionary time: The case of the acorn barnacles (Crustacea: Cirripedia). Paleobiology. 6: 173183.CrossRefGoogle Scholar
Taylor, J. D., Morris, N. J. and Taylor, C. N. 1980. Food specialization and the evolution of predatory prosobranch gastropods. Palaeontology. 23: 375409.Google Scholar
Williams, A. 1957. Evolutionary rates of brachiopods. Geol. Mag. 94: 201211.CrossRefGoogle Scholar
Williams, A. 1965. Stratigraphic distribution. Pp. H237–H250. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part H, vol. 1. Univ. Kansas Press; Lawrence.Google Scholar
Williams, A. and Hurst, J. M. 1977. Brachiopod evolution. pp. 79122. In: Hallam, A., ed. Patterns of Evolution. Elsevier Sci. Publ. Co.; Amsterdam.Google Scholar
Williams, G. C. 1975. Sex and Evolution. 200 pp. Princeton Univ. Press, Princeton, New Jersey.Google ScholarPubMed
Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1: 130.Google Scholar
Walker, E. P. 1975. Mammals of the World. Third ed. revised by Paradiso, J. L. 2 vol. 1500 pp. Johns Hopkins Univ. Press; Baltimore.Google Scholar