Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T03:27:18.371Z Has data issue: false hasContentIssue false

Morphologic change in the clawed lobster Hoploparia (Nephropidae) from the Cretaceous of Antarctica

Published online by Cambridge University Press:  08 February 2016

D. Tshudy
Affiliation:
Department of Geosciences, Edinboro University of Pennsylvania, Edinboro, Pennsylvania 16444
T. K. Baumiller
Affiliation:
Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109
U. Sorhannus
Affiliation:
Department of Biology, Edinboro University of Pennsylvania, Edinboro, Pennsylvania 16444

Abstract

Antarctic Hoploparia exhibit morphologic changes upsection in a stratigraphic record considered to be long (approximately 15 m.y.) and free of major hiatuses. Five characters exhibit change upsection, and the overall morphologies of the geologically oldest and youngest lobsters are different. The observed patterns could be the result of either phyletic evolution or gradual invasion of one or more species into the range of the original species. The most parsimonious interpretation of the data argues against the invasion hypothesis but supports the phyletic evolution hypothesis.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bell, M. A., Baumgartner, J., and Olson, E. 1985. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11:258271.CrossRefGoogle Scholar
Crame, J. A., Pirrie, D., Riding, J. B., and Thomson, M. R. A. 1991. Campanian-Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. Journal of the Geological Society of London 148:11251140.CrossRefGoogle Scholar
Erwin, D. H., and Anstey, R. L. 1995. Speciation in the fossil record. Pp. 1138in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Feldmann, R. M., and Tshudy, D. M. 1989. Evolutionary patterns in macrurous decapod crustaceans from Cretaceous to early Cenozoic rocks of the James Ross Island region, Antarctica. Pp. 183195in Crame, J. A., ed. Origins and evolution of the Antarctic biota. Geological Society of London Special Publication No. 47.Google Scholar
Feldmann, R.M., Tshudy, D., and Thomson, M. R. A. 1993. Late Cretaceous and Paleocene decapod crustaceans from James Ross basin, Antarctic Peninsula. Paleontological Society Memoir 28. Allen Press. Lawrence, Kans.CrossRefGoogle Scholar
Fenster, E. J., Sorhannus, U., Burckle, L., and Hoffman, A. 1989. Patterns of morphological change in the Neogene diatom Nitzschia jouseae Burckle. Historical Biology 2:197211.CrossRefGoogle Scholar
Geary, D. 1987. Evolutionary tempo and mode in a sequence of the Upper Cretaceous bivalve Pleuriocardia. Paleobiology 13:140151.CrossRefGoogle Scholar
Glaessner, M. F. 1969. Decapoda. Pp. R399R651in Brooks, H. K., Carpenter, F. M., Glaessner, M. F., Hahn, G., Hessler, R. R., Hoffman, R. L., Holthuis, L. B., Manning, R. B., Manton, S. M., McCormick, L., Moore, R. C., Newman, W. A., Palmer, A. R., Rolfe, W. D. I., Tasch, P., Withers, T. H., and Zullo, V. A., eds. Arthropoda 4, Vol. 2. Part R ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas, Boulder, Colo. and Lawrence, Kans.Google Scholar
Gould, S. J., and Eldridge, N. 1993. Punctuated equilibrium comes of age. Nature 366:223227.CrossRefGoogle ScholarPubMed
Hobbs, H. A. 1974. Adapations and convergence in North American crayfishes. Pp. 541551in Avault, J. W. Jr. ed. Freshwater crayfish. Papers from the Second International Crayfish Symposium, Baton Rouge, Lousiana, 1974. Louisiana State University Press, Baton Rouge.Google Scholar
Levinton, J. S. 1983. Stasis in progress: The empirical basis for macroevolution. Annual Review of Ecology and Systematics 14:103137.CrossRefGoogle Scholar
Lieberman, B.S., Brett, C., and Eldredge, N. 1995. A study of stasis and change in two species lineages from the Middle Devonian of New York state. Paleobiology 21:1527.CrossRefGoogle Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, Southwest Pacific. Paleobiology 7:230240.CrossRefGoogle Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence of punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic formainfera. Paleobiology 9:377384.CrossRefGoogle Scholar
Ozawa, T. 1975. Evolution of Lepidolina multiseptata (Permian foraminifer) in East Asia. Memoirs of the Faculty of Science, Kyushu University. Series D, Geology 23:117164.Google Scholar
Pirrie, D., Crame, J. A., and Riding, J. B. 1991. Late Cretaceous stratigraphy and sedimentology of Cape Lamb, Vega Island, Antarctica. Cretaceous Research 12:227258.CrossRefGoogle Scholar
Raup, D. M., and Crick, R. E. 1981. Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 7:90100.CrossRefGoogle Scholar
Sheldon, P. 1987. Parallel gradualistic evolution of Ordovician trilobites. Nature 330:561563.CrossRefGoogle ScholarPubMed
Tshudy, D. 1993. Taxonomy and evolution of the clawed lobster families Nephropidae and Chilenophoberidae. , Kent State University, Kent, Ohio.Google Scholar