Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T04:17:02.797Z Has data issue: false hasContentIssue false

Molecular evolution from the fossil record—a dream or a reality?

Published online by Cambridge University Press:  08 February 2016

Stephen Weiner*
Affiliation:
Isotope Department, Weizmann Institute of Science

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abelson, P. H. 1955. Organic constituents of fossils. Carnegie Inst. Washington Yearb. 54:107109.Google Scholar
de Jong, E. W., Westbroek, P., Westbroek, J. F., and Bruning, J. W. 1974. Preservation of antigenic properties of macromolecules over 70 Myr. Nature. 252:6364.CrossRefGoogle ScholarPubMed
Drozdova, T. V. 1969. Organic matter in belemnites. Geokhimiya. 10:12811285.Google Scholar
Florkin, M. 1971. The present state of molecular paleontology. Pp. 1026. In: Buvet, R. and Ponamperuma, C., eds., Chemical Evolution and the Origin of Life. North-Holland Publishing Company.Google Scholar
Hare, P. E. and Hoering, T. C. 1977. The organic constituents of fossil mollusc shells. Carnegie Inst. Washington Yearb. 76:625631.Google Scholar
Krampitz, G., Weise, K., Potz, A., Engels, J., Samata, T., Becker, K., and Hedding, M. 1977. Calcium-binding peptide in dinosaur egg shells. Naturwissenschaften. 64:583.CrossRefGoogle Scholar
Nissenbaum, A. and Kaplan, I. R. 1972. Chemical and isotopic evidence for the in situ origin of marine humic substances. Limnol. Oceanogr. 17:570582.CrossRefGoogle Scholar
Van der Meide, P. H., Westbroek, P., de Jong, E. W., de Leeuw, J. W., and Meuzellar, H. L. C. 1979. Characterization of macromolecules from fossil shells by immunology and Curiepoint pyrolysis mass spectrometry. In: Proc. 3rd International Symposium on the Mechanisms of Biomineralization in the Invertebrates and Plants. (Japan, 1977.) In press.Google Scholar
Weiner, S. and Hood, L. 1975. Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science. 190:987989.CrossRefGoogle ScholarPubMed
Weiner, S., Lowenstam, H. A., and Hood, L. 1976. Characterization of 80 million-year-old mollusk shell proteins. Proc. Natl. Acad. Sci. U.S.A. 73:25412545.CrossRefGoogle ScholarPubMed
Weiner, S., Lowenstam, H. A., and Hood, L. 1977. Discrete molecular weight components of the organic matrices of mollusc shells. J. Exp. Mar. Biol. Ecol. 30:4551.CrossRefGoogle Scholar
Weiner, S., Lowenstam, H. A., Taborek, B., and Hood, L. 1979. Fossil mollusk organic matrix components preserved for 80 million years. Paleobiology. 5:144150.CrossRefGoogle Scholar
Weiner, S. 1979. Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells. Calc. Tissue Int. 29:163167.CrossRefGoogle ScholarPubMed
Weiner, S. and Lowenstam, H. A. 1980. Well preserved fossil mollusk shells: characterization of mild diagenetic processes. In: Hare, P. E., ed., Biogeochemistry of Amino Acids. In press.Google Scholar
Westbroek, P., van der Meide, P. H., van der Wey-Kloppers, J. S., van der Sluis, R. J., de Leeuw, J. W., and de Jong, E. W. 1979. Fossil macromolecules from cephalopod shells: characterization, immunological response and diagenesis. Paleobiology. 5:151167.CrossRefGoogle Scholar
Wyckoff, R. W. G. 1972. The Biochemistry of Animal Fossils. 152 pp. Williams and Wilkins Company; Baltimore, Maryland.Google Scholar