Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T15:38:41.730Z Has data issue: false hasContentIssue false

A model of onshore-offshore change in faunal diversity

Published online by Cambridge University Press:  08 February 2016

J. John Sepkoski Jr.*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637

Abstract

Onshore-offshore patterns of faunal change occurred at many taxonomic scales during the Paleozoic Era, ranging from replacement of the Cambrian evolutionary fauna by the Paleozoic fauna to the environmental expansion of many orders and classes. A simple mathematical model is constructed to investigate such change. The environmental gradient across the marine shelf-slope is treated as a linear array of discrete habitats, each of which holds a set number of species, as observed in the fossil record. During any interval of time, some portion of the species in each habitat becomes extinct by background processes, with rates of extinction varying among both clades and habitats, as also observed in the record. After extinction, species are replaced from within the habitat and from immediately adjacent habitats, with proportions dependent on surviving species. This model leads to the prediction that extinction-resistant clades will always diversify at the expense of extinction-prone clades. But if extinction intensity is highest in nearshore habitats, extinction-resistant clades will expand preferentially in the onshore direction, build up diversity there, and then diversify outward toward the offshore. Thus, onshore-offshore patterns of diversification may be the expectation for faunal change quite independently of whether or not clades originate onshore. When the model is parameterized for Paleozoic trilobites and brachiopods, numerical solutions exhibit both a pattern of faunal change and a time span for diversification similar to that seen in the fossil record. They also generate structure similar to that seen in global diversification, including logistic patterns of growth, declining origination but constant extinction within clades through time, and declining overall extinction across clades through time.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aronson, R. B. 1990. Onshore-offshore patterns of human fishing activity. Palaios 5:8893.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Berry, W.B.N. 1972. Early Ordovician bathyurid province lithofacies, biofacies, and correlations—their relationship to a proto-Atlantic Ocean. Lethaia 5:6984.CrossRefGoogle Scholar
Berry, W.B.N. 1974. Types of early Paleozoic faunal replacements in North America: their relationship to environmental change. Journal of Geology 82:371382.CrossRefGoogle Scholar
Berry, W.B.N. 1977. Graptolite biostratigraphy: a wedding of classical principles and current concepts. Pp. 321338. In Kauffman, E. G., and Hazel, J. E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchinson & Ross; Stroudsburg, Pennsylvania.Google Scholar
Boardman, D. R. II, Mapes, R. H., Yancey, T. E., and Malinky, J. M. 1984. A new model for depth related allogenic community succession within North American Pennsylvanian cyclothems and implications on the black shale problem. Pp. 141182. In Hyne, N. J. (ed.), Limestones of the Mid-Continent. Tulsa Geological Survey Special Publication 2.Google Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.CrossRefGoogle Scholar
Bottjer, D. J., Droser, M. L., and Jablonski, D. 1988. Palaeoenvironmental trends in the history of trace fossils. Nature 333:252255.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier; Amsterdam.Google Scholar
Boucot, A. J. 1978. Community evolution and rates of cladogenesis. Evolutionary Biology 11:545655.Google Scholar
Boucot, A. J. 1983. Does evolution occur in an ecological vacuum? II. Journal of Paleontology 57:130.Google Scholar
Boyajian, G. F. 1986. Phanerozoic trends in background extinction: consequence of an aging fauna. Geology 14:955958.2.0.CO;2>CrossRefGoogle Scholar
Bretsky, P. W. 1968. Evolution of Paleozoic marine invertebrate communities. Science 159:12311233.CrossRefGoogle ScholarPubMed
Bretsky, P. W. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeography, Palaeoclimatology, Palaeoecology 6:4559.CrossRefGoogle Scholar
Bretsky, P. W., and Klofak, S. M. 1985. Margin to craton expansion of Late Ordovician benthic marine invertebrates. Science 227:14691471.CrossRefGoogle ScholarPubMed
Buzas, M. A., and Culver, S. J. 1984. Species duration and evolution: benthic Foraminifera on the Atlantic continental margin of North America. Science 225:829830.CrossRefGoogle ScholarPubMed
Carlson, S. J. 1989. Articulate brachiopod phylogeny: the nature of spiriferid paraphyly. Geological Society of America Abstracts with Program 21(6):A209.Google Scholar
Carr, T. R., and Kitchell, J. A. 1980. Dynamics of taxonomic diversity. Paleobiology 6:427443.CrossRefGoogle Scholar
Cisne, J. L. 1974. Evolution of the world fauna of aquatic free-living arthropods. Evolution 28:337366.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1989. The persistence of Burgess Shale-type fauna: implications for the evolution of deeper-water faunas. Transactions of the Royal Society of Edinburg: Earth Sciences 80:271283.Google Scholar
Crimes, T. P. 1974. Colonization of the early ocean floor. Nature 248:328330.CrossRefGoogle Scholar
Dimitriyev, V. Y. 1978. Some aspects of the study of changes in the systematic diversity of fossil organisms. Paleontological Journal 12:257265.Google Scholar
Eldredge, N. 1977. Trilobites and evolutionary patterns. Pp. 305332. In Hallam, A. (ed.), Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Emiliani, C. 1982. Extinctive and competitive evolution combine into a unified model of evolution. Journal of Theoretical Biology 97:1333.CrossRefGoogle Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 4:11771186.CrossRefGoogle Scholar
Flessa, K. W., and Imbrie, J. 1973. Evolutionary pulsations: evidence from Phanerozoic diversity patterns. Pp. 247285. In Tarling, D. H., and Runcorn, S. K. (eds.), Implications of Continental Drift to the Earth Sciences. Academic Press; London.Google Scholar
Flessa, K. W., and Jablonski, D. 1985. Declining Phanerozoic background extinction rates: effect of taxonomic structure? Nature 313:216218.CrossRefGoogle Scholar
Foote, M. 1988. Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology 14:258271.CrossRefGoogle Scholar
Fortey, R. A. 1980. Generic longevity in Lower Ordovician trilobites: relation to environment. Paleobiology 6:2431.CrossRefGoogle Scholar
Fortey, R. A. 1990. Ontogeny, hypostome attachment and trilobite classification. Palaeontology 33:529576.Google Scholar
Fortey, R. A., and Chatterton, B.D.E. 1988. Classification of the trilobite suborder Asaphina. Palaeontology 31:165222.Google Scholar
Frey, R. C. 1987. The occurrence of pelecypods in early Paleozoic epeiric-sea environments, Late Ordovician of the Cincinnati, Ohio area. Palaios 2:323.CrossRefGoogle Scholar
Gilinsky, N. L., and Bambach, R. K. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 13:427445.CrossRefGoogle Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Belknap Press; Cambridge, Massachusetts.Google Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.CrossRefGoogle Scholar
Hallam, A. 1987. Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe. Paleobiology 13:152168.CrossRefGoogle Scholar
Hansen, T. A. 1978. Larval dispersal and species longevity in lower Tertiary gastropods. Science 199:885887.CrossRefGoogle ScholarPubMed
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193207.CrossRefGoogle Scholar
Hoffman, A., and Fenster, E. J. 1986. Randomness and diversification in the Phanerozoic: a simulation. Palaeontology 29:655663.Google Scholar
Holman, E. W. 1989. Some evolutionary correlates of higher taxa. Paleobiology 15:357363.CrossRefGoogle Scholar
Jablonski, D. 1980. Apparent versus real biotic effects of transgressions and regressions. Paleobiology 6:397407.CrossRefGoogle Scholar
Jablonski, D. 1986a. Larval ecology and macroevolution in marine invertebrates. Bulletin of Marine Science 39:565587.Google Scholar
Jablonski, D. 1986b. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.CrossRefGoogle ScholarPubMed
Jablonski, D. 1989. The biology of mass extinction: a paleontological view. Philosophical Transactions of the Royal Society of London, series B, 325:357368.Google Scholar
Jablonski, D., and Bottjer, D. J. 1983. Soft-bottom epifaunal suspension-feeding assemblages in the Late Cretaceous: implications for the evolution of benthic paleocommunities. Pp. 747812. In Tevesz, M.J.S., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Jablonski, D., and Bottjer, D. J. 1988. Onshore-offshore evolutionary patterns in post-Paleozoic echinoderms: a preliminary analysis. Pp. 8190. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology. Balkema; Rotterdam.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990a. The ecology of evolutionary innovation: the fossil record. Pp. 253288. In Nitecki, M. H. (ed.), Evolutionary Innovations. University of Chicago Press; Chicago.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990b. The origin and diversification of major groups: environmental patterns and macroevolutionary lags. Pp. 1757. In Taylor, P. D., and Larwood, G. P. (eds.), Major Evolutionary Radiations. Systematics Association Special Volume No. 42. Clarendon Press; Oxford.Google Scholar
Jablonski, D., and Bottjer, D. J. 1991. Onshore-offshore trends in marine invertebrate evolution. Pp. 2175. In Ross, R. M., and Allmon, W. D. (eds.), Causes of Evolution: A Paleontologic Perspective. University of Chicago Press; Chicago.Google Scholar
Jablonski, D., and Valentine, J. W. 1981. Onshore-offshore gradients in Recent eastern Pacific shelf faunas and their paleobiogeographic significance. Pp. 441453. In Scudder, G.G.W., and Reveal, J. L. (eds.), Evolution Today. Carnegie-Mellon University; Pittsburgh.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:11231125.CrossRefGoogle ScholarPubMed
Jackson, J.B.C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. American Naturalist 108:541560.CrossRefGoogle Scholar
Kammer, T. W., Brett, C. E., Boardman, D. R. II, and Mapes, R. H. 1986. Ecologic stability of the dysaerobic biofacies during the late Paleozoic. Lethaia 19:109121.CrossRefGoogle Scholar
Kauffman, E. G. 1978. Evolutionary rates and patterns among Cretaceous Bivalvia. Philosophical Transactions of the Royal Society of London, series B, 284:277304.Google Scholar
Kitchell, J. A., and Carr, T. R. 1985. Nonequilibrium model of diversification: faunal turnover dynamics. Pp. 277310. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press and Pacific Division, American Association for the Advancement of Science; Princeton, New Jersey.Google Scholar
Kitchell, J. A., and MacLeod, N. 1988. Macroevolutionary interpretations of symmetry and synchroneity in the fossil record. Science 240:11901193.CrossRefGoogle ScholarPubMed
Levinton, J. S. 1979. A theory of diversity equilibrium and morphological evolution. Science 204:335336.CrossRefGoogle ScholarPubMed
Levinton, J. S. 1988. Genetics, Paleontology, and Macroevolution. Cambridge University Press; Cambridge.Google Scholar
MacArthur, R. H. 1969. Patterns of communities in the tropics. Biological Journal of the Linnean Society 1:1930.CrossRefGoogle Scholar
MacArthur, R. H., and Wilson, E. O. 1963. An equilibrium theory of insular zoogeography. Evolution 17:373387.CrossRefGoogle Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The Theory of Island Biogeography. Monographs in Population Biology, No. 1. Princeton University Press; Princeton, New Jersey.Google Scholar
Maurer, B. A. 1989. Diversity-dependent species dynamics: incorporating population-level processes on species dynamics. Paleobiology 15:133146.CrossRefGoogle Scholar
McKinney, M. L. 1986. Ecological causation of heterochrony: a test and implications for evolutionary theory. Paleobiology 12:282289.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology 3:7482.CrossRefGoogle Scholar
Miller, A. I. 1988. Spatio-temporal transitions in Paleozoic Bivalvia: an analysis of North American fossil assemblages. Historical Biology 1:251273.CrossRefGoogle Scholar
Miller, A. I. 1990a. Bivalves. Pp. 143161. In McNamara, K. J. (ed.), Evolutionary Trends. Belhaven Press; London.Google Scholar
Miller, A. I. 1990b. The relationship between global diversification and spatio-temporal transitions in Paleozoic Bivalvia. Pp. 8598. In Miller, W. III (ed.), Paleocommunity Temporal Dynamics: The Long-Term Development of Multispecies Assemblages. Paleontological Society Special Publication No. 5.Google Scholar
Morris, N. J. 1978. The infaunal descendents of the Cycloconchidae: an outline of the evolutionary history and taxonomy of the Heteroconchia, superfamilies Cycloconchacea to Chamacea. Philosophical Transactions of the Royal Society of London, series B, 284:259275.Google Scholar
Mount, J. F., and Signor, P. W. 1985. Early Cambrian innovation in shallow subtidal environments: paleoenvironments of Early Cambrian shelly fossils. Geology 13:730733.2.0.CO;2>CrossRefGoogle Scholar
Palmer, A. R. 1965. Biomere—a new kind of biostratigraphic unit. Journal of Paleontology 39:149153.Google Scholar
Palmer, A. R. 1982. Biomere boundaries: a possible test for extraterrestrial perturbation of the biosphere. Pp. 469476. In Silver, L. T., and Schultz, P. H. (eds.), Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Paper 190.CrossRefGoogle Scholar
Raup, D. M. 1988. Testing the fossil record for evolutionary progress. Pp. 293317. In Nitecki, M. H. (ed.), Evolutionary Progress. University of Chicago Press; Chicago.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Rosenzweig, M. L. 1975. On continental steady states of species diversity. Pp. 121140. In Cody, M. L., and Diamond, J. M. (eds.), Ecology and Evolution of Communities. Belknap Press; Cambridge, Massachusetts.Google Scholar
Rosenzweig, M. L., and McCord, R. D. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17.CrossRefGoogle Scholar
Rowland, S. M., Kanim, N. R., Parker, M. S., Peterson, C. G., and Van Vactor, S. S. 1984. Onshore-offshore patterns of Cambrian shelly taxa in the western United States. Geological Society of America Abstracts with Program 16(6):640.Google Scholar
Scheltema, R. S. 1977. Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. Pp. 73108. In Kauffman, E. G., and Hazel, J. E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchinson and Ross; Stroudsburg, Pennsylvania.Google Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222252.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1987. Environmental trends in extinction during the Phanerozoic. Science 235:6466.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma—where does all the diversity go? Paleobiology 14:221234.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1990. Evolutionary faunas. Pp. 3741. In Briggs, D.E.G., and Crowther, P. R. (eds.), Paleobiology; A Synthesis. Blackwell; Oxford.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp. 153190. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press and Pacific Division, American Association for the Advancement of Science; Princeton, New Jersey.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673717. In Tevesz, M.J.S., and McCall, P. M. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Sheehan, P. M. 1975. Brachiopod synecology in a time of crisis (Late Ordovician-Early Silurian). Paleobiology 1:205212.CrossRefGoogle Scholar
Sheehan, P. M. 1982. Brachiopod macroevolution at the Ordovician-Silurian Boundary. Third North American Paleontological Convention, Proceedings 2:477481.Google Scholar
Sheehan, P. M. 1986. Macroevolution and low diversity faunas. Geological Society of America Abstracts with Program 18:324.Google Scholar
Signor, P. W., and Mount, J. F. 1986. Paleoenvironmental gradients in adaptive innovation: nearshore innovations or evolutionary persistence? Society of Economic Paleontologists and Mineralogists Annual Midyear Meeting, Raleigh, North Carolina, Program with Abstracts, p. 103.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press; New York.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia University Press; New York.CrossRefGoogle Scholar
Smith, C.A.F. III. 1977. Diversity associations as stochastic variables. Paleobiology 3:4148.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman; San Francisco.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.CrossRefGoogle Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. Pp. 103127. In Ross, R. M., and Allmon, W. D. (eds.), Causes of Evolution: a Paleontological Perspective. University of Chicago Press; Chicago.Google Scholar
Stanley, S. M., Signor, P. W., Lidgard, S., and Karr, A. F. 1981. Natural clades differ from “random” clades: simulations and analysis. Paleobiology 7:115127.CrossRefGoogle Scholar
Steele-Petrović, M. 1979. The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities. Palaeontology 22:101134.Google Scholar
Stitt, J. H. 1977. Late Cambrian and earliest Ordovician trilobites, Wichita Mountain area, Oklahoma. Oklahoma Geological Survey Bulletin 124.Google Scholar
Valentine, J. W. 1990. The macroevolution of clade shape. Pp. 128150. In Ross, R. M., and Allmon, W. D. (eds.), Causes of Evolution: a Paleontological Perspective. University of Chicago Press; Chicago.Google Scholar
Valentine, J. W., and Jablonski, D. 1983. Speciation in the shallow sea: general patterns and biogeographic controls. Pp. 203228. In Sims, R. W., Price, J. H., and Whalley, P.E.S. (eds.), Evolution, Time and Space: The Emergence of the Biosphere. Academic Press; London.Google Scholar
Van Valen, L. M. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.CrossRefGoogle Scholar
Van Valen, L. M. 1985a. A theory of origination and extinction. Evolutionary Theory 7:133142.Google Scholar
Van Valen, L. M. 1985b. How constant is extinction? Evolutionary Theory 7:93106.Google Scholar
Van Valen, L. M., and Maiorana, V. C. 1985. Patterns of origination. Evolutionary Theory 7:107125.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Vrba, E. S. 1987. Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology 1:283300.CrossRefGoogle Scholar
Walker, T. D., and Valentine, J. W. 1984. Equilibrium models of evolutionary species diversity and the number of empty niches. American Naturalist 124:887899.CrossRefGoogle Scholar
Waller, T. R. 1978. Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Philosophical Transactions of the Royal Society of London, series B, 284:345365.Google Scholar
Westrop, S. R., and Ludvigsen, R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology 13:8499.CrossRefGoogle Scholar
Yancey, T. E., and Stevens, C. H. 1981. Early Permian fossil communities in northeastern Nevada and northwestern Utah. Pp. 243270. In Gray, J., Boucot, A. J., and Berry, W.B.N. (eds.), Communities of the Past. Hutchinson Ross; Stroudsburg, Pennsylvania.Google Scholar