Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T21:42:12.276Z Has data issue: false hasContentIssue false

Mississippian pelmatozoan community reorganization: a predation-mediated faunal change

Published online by Cambridge University Press:  08 February 2016

Johnny A. Waters
Affiliation:
Department of Geology, West Georgia College, Carrollton, Georgia 30118
Christopher G. Maples
Affiliation:
Kansas Geological Survey, The University of Kansas, Lawrence, Kansas 66047

Abstract

Crinoid genera of the subclass Camerata generally dominated Late Silurian through Middle Mississippian pelmatozoan echinoderm assemblages. This dominance reached a peak during the early and middle Mississippian (Kinderhookian-Meramecian), but abruptly ended at the close of the Genevievian Stage (=lowermost Chesterian) in eastern North America. During the Genevievian Stage, crinoids of the subclass Inadunata became taxonomically more diverse but a few camerates, especially Platycrinites and Batocrinus, continued to be numerically dominant in many pelmatozoan assemblages. In eastern North America, platycrinids and batocrinids were reduced drastically near the Genevievian-Gasperian boundary. So obvious is this faunal change that, until recently, the Meramecian-Chesterian Series boundary was recognized as the last occurrence of Platycrinites penicillus. The sudden and drastic decline of numerically dominant platycrinids and batocrinids in eastern North America suggests a mass extinction, but is better interpreted as a range contraction and loss of dominance. Platycrinids, in particular, continued to be significant components of pelmatozoan assemblages in Europe and Asia long after the end of the Genevievian Stage. We infer that this reorganization of pelmatozoan assemblages in eastern North America was a product of predation, siliciclastic tolerance, and current-energy preference, with predation playing a major role. Reorganization resulted in post-Genevievian dominance by (1) cladid crinoids, (2) camerate crinoids that were cladid homeomorphs, and (3) the blastoid Pentremites. Foraminifera, conodonts, corals, brachiopods, bryozoans, and other echinoderm groups were affected little, if any, during this same time.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aronson, R. B. 1989. A community-level test of the Mesozoic marine revolution theory. Paleobiology 15:2025.CrossRefGoogle Scholar
Ausich, W. I., and Kammer, T. W. 1990. Systematics and phylogeny of the late Osagean and Meramecian crinoids Platycrinites and Eucladocrinus from the Mississippian stratotype region. Journal of Paleontology 64:759778.CrossRefGoogle Scholar
Ausich, W. I., and Lane, N. G. 1985. Crinoid assemblages and geographic endemism in the Lower Mississippian (Carboniferous) of the United States continental interior. Neuvième Congrès International de Stratigraphie et de Géologie du Carbonifère, Comptes Rendus 5:216224.Google Scholar
Ausich, W. I., Kammer, T. W., and Lane, N. G. 1979. Fossil communities of the Borden (Mississippian) delta in Indiana and northern Kentucky. Journal of Paleontology 53:11821196.Google Scholar
Bassler, R. S., and Moody, M. W. 1943. Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geological Society of America Special Papers No. 45.CrossRefGoogle Scholar
Breimer, A., and Macurda, D. B. Jr. 1972. The phylogeny of the fissiculate blastoids. Koninklijke Nederlandse Akademie Van Wetenscchappen-Amsterdam, Eerste Reeks, 26.Google Scholar
Burdick, D. W., and Strimple, H. L. 1982. Genevievian and Chesterian crinoids of Alabama. Geological Survey of Alabama, Bulletin 121.Google Scholar
Chestnut, D. R. Jr., and Ettensohn, F. R. 1988. Hombergian (Chesterian) echinoderm paleontology and paleoecology, south-central Kentucky. Bulletins of American Paleontology 95(330):1102.Google Scholar
Dott, R. H. Jr., and Batten, R. L. 1976. Evolution of the Earth, Second Edition. McGraw-Hill; New York.Google Scholar
Ettensohn, F. R. 1975. The autecology of Agassizocrinus lobatus. Journal of Paleontology 49:10441061.Google Scholar
Feldman, H. R. 1987. Facies faunas of the Salem Limestone (Mississippian) in southern Indiana and central Kentucky. Southeastern Geology 27:171183.Google Scholar
Horowitz, A. S., and Waters, J. A. 1972. A Mississippian echinoderm site in Alabama. Journal of Paleontology 46:660665.Google Scholar
Kammer, T. W., and Ausich, W. I. 1987. Aerosol suspension feeding and current velocities: distributional controls for Late Osagean crinoids. Paleobiology 13:379395.CrossRefGoogle Scholar
Lane, N. G. 1972. Synecology of Middle Mississippian (Carboniferous) crinoid communities in Indiana. 24th International Geological Congress, Section 7:96114.Google Scholar
Lane, N. G. 1984. Predation and survival among inadunate crinoids. Paleobiology 10:453458.CrossRefGoogle Scholar
Lane, N. G., and Sevastopulo, G. D. 1987. Stratigraphic distribution of Mississippian camerate crinoid genera from North America and western Europe. Courier Forschungsinstitut Senckenberg 98:199206.Google Scholar
Lane, N. G., and Sevastopulo, G. D. 1990. Biogeography of Lower Carboniferous crinoids. Pp. 333338. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society of London Memoir 12.Google Scholar
Malzahn, E. 1968. Uber neue Funde von Janassa bituminosa (Schloth.) im niederrheinisschen Zechstein. Geologisch Jaahrbuch 85:6796.Google Scholar
Mapes, R. H., and Benstock, E. J. 1988. Color pattern on the Carboniferous bivalve Streblochondria? Newell. Journal of Paleontology 62:439441.CrossRefGoogle Scholar
Maples, C. G., and Waters, J. A. 1987. Redefinition of the Meramec-Chester boundary (Mississippian). Geology 15:647651.2.0.CO;2>CrossRefGoogle Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology 11:154164.CrossRefGoogle Scholar
Meyer, D. L. 1988. Crinoids as renewable resources: rapid regeneration of the visceral mass in a tropical reef-dwelling crinoid from Australia. Pp. 519522. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology, Proceedings of the Sixth International Echinoderm Conference, Victoria, 23-28 August 1987. A. A. Balkema; Rotterdam.Google Scholar
Meyer, D. L., and Ausich, W. I. 1983. Biotic interactions among Recent and among fossil crinoids. Pp. 377427. In Tevesz, M.J.S., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press; New York.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology 3:7482.CrossRefGoogle Scholar
Moy-Thomas, J. A., and Miles, R. S. 1971. Palaeozoic Fishes, Second Edition. Chapman and Hall; London.CrossRefGoogle Scholar
Rollins, H. B., and Brezinski, D. K. 1988. Reinterpretation of crinoid-platyceratid interaction. Lethaia 21:207217.CrossRefGoogle Scholar
Saunders, W. B. 1984 [1985]. The role and status of Nautilus in its natural habitat: evidence from deep-water remote camera photosequences. Paleobiology 10:469486.CrossRefGoogle Scholar
Schneider, J. A. 1988. Frequency of arm regeneration of comatulid crinoids in relation to life habit. Pp. 531538. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology, Proceedings of the Sixth International Echinoderm Conference, Victoria, 23-28 August 1987. A. A. Balkema; Rotterdam.Google Scholar
Schneider, J. A. 1989. Teleost fish and retreat of stalked crinoids. 28th International Geological Congress, Abstracts 3:52.Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.CrossRefGoogle Scholar
Strimple, H. L., and Watkins, W. T. 1969. Carboniferous crinoids of Texas with stratigraphic implications. Palaeontographica Americana 6(40):141275.Google Scholar
Sutton, A. H. 1934. Evolution of Pterotocrinus in the Eastern Interior Basin during the Chester Epoch. Journal of Paleontology 8:393416.Google Scholar
Termier, G., and Termier, H. 1950. Paleontologie Marocaine II. Invertebres de L'ère Primaire, Fascicule IV. Annelides, Arthropodes, Echinodermes, Conularides et Graptolithes. Service des Mines et de la Carte Géologique du Maroc, Notes et Memoires, No. 79.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1982. Unsuccessful predation and evolution. American Naturalist 120:701720.CrossRefGoogle Scholar
Vermeij, G. J. 1983. Shell-breaking predation through time. Pp. 649669. In Tevesz, M.J.S., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press; New York.CrossRefGoogle Scholar
Waters, J. A., and Bohnenstiehl, K. 1988. Internal anatomy of Deltoblastus and Pentremites. Geological Society of America. Abstracts with Program 20:A3341.Google Scholar
Waters, J. A., Broadhead, T. W., and Horowitz, A. S. 1982. The evolution of Pentremites (Blastoidea) and Carboniferous crinoid community succession. Pp. 133138. In Lawrence, J. M. (ed.), Echinoderms: Proceedings of the International Conference, Tampa Bay. A. A. Balkema; Rotterdam.Google Scholar
Waters, J. A., Horowitz, A. S., and Macurda, D. B. Jr. 1985. Ontogeny and phylogeny of the Carboniferous blastoid Pentremites. Journal of Paleontology 59:701712.Google Scholar
Webster, G. D. 1973. Bibliography and index of Paleozoic crinoids. 1942-1968. Geological Society of America Memoir 137.Google Scholar
Webster, G. D. 1987. Permian crinoids from the type-section of the Callytharra Formation, Callytharra Springs, Western Australia. Alcheringa 11:95135.CrossRefGoogle Scholar
Webster, G. D., and Lane, N. G. 1967. Additional Permian crinoids from southern Nevada. University of Kansas Paleontological Contributions, Paper 27.Google Scholar
Welch, J. R. 1978. Flume study of simulated feeding and hydrodynamics of a Paleozoic stalked crinoid. Paleobiology 4:8995.CrossRefGoogle Scholar
Zangerl, R., and Richardson, E. S. Jr. 1963. The paleoecological history of two Pennsylvanian black shales. Fieldiana: Geology Memoirs 4.CrossRefGoogle Scholar