Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:50:47.509Z Has data issue: false hasContentIssue false

Late Cretaceous-Cenozoic history of deciduousness and the terminal Cretaceous event

Published online by Cambridge University Press:  08 April 2016

Jack A. Wolfe*
Affiliation:
Paleontology and Stratigraphy Branch, U.S. Geological Survey, Denver, Colorado 80225

Abstract

Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred “impact winter” of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarez, W., Alvarez, L. W., Asaro, F., and Michel, H. V. 1982. Current status of the impact theory for the terminal Cretaceous extinction. Geol. Soc. Am. Spec. Pap. 190:305315.Google Scholar
Axelrod, D. I. 1966. Origin of the deciduous and evergreen habits in temperate forests. Evolution. 20:115.CrossRefGoogle ScholarPubMed
Axelrod, D. I. 1984. An interpretation of Cretaceous and Tertiary biota in polar regions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45:105147.Google Scholar
Berry, E. W. 1916. The physical conditions indicated by the flora of the Calvert formation. U.S. Geol. Surv. Prof. Pap. 98F:6173.Google Scholar
Carlquist, S. 1978. Ecological strategies in wood evolution: a floristic approach. Am. J. Bot. 64:887896.Google Scholar
Chaney, R. W. and Sanborn, E. I. 1933. The Goshen flora of west central Oregon. Pub. Carnegie Inst. Wash. 439. 103 pp.Google Scholar
Christophel, D. C. 1981. Tertiary megafossil floras of Australia as indicators of floristic associations and paleoclimate. Pp. 379390. In: Keast, A., ed., Ecological Biogeography of Australia. W. Junk; The HagueGoogle Scholar
Davis, M. B. 1983. Quaternary history of deciduous forests of eastern North America and Europe. Ann. Missouri Bot. Gard. 70:550563.Google Scholar
Dilcher, D. L. and Crane, P. R. 1984. Archaeanthus: an early Cretaceous angiosperm from the Cenomanian of the Western Interior of North America. Ann. Missouri Bot. Gard. 71:351383.Google Scholar
Doyle, J. A., Biens, P., Doerenkamp, A., and Jardine, S. 1977. Angiosperm pollen from the pre-Albian Lower Cretaceous of Equatorial Africa. Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine. 1:451473.Google Scholar
Doyle, J. A. and Hickey, L. J. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing in early angiosperm evolution. Pp. 139206. In: Beck, C. B., ed., Origin and Early Evolution of Angiosperms. Columbia Univ. Press; New York.Google Scholar
Franklin, J. F. and Dyrness, C. T. 1969. Vegetation of Oregon and Washington. U.S. Forest Service Res. Paper PNW-80. 216 pp.Google Scholar
Fredericksen, N. O. 1984. Stratigraphic, paleoclimatic, and biogeographic significance of Tertiary sporomorphs from Massachusetts. U.S. Geol. Surv. Prof. Paper 1308. 25 pp.Google Scholar
Givnish, T. 1979. On the adaptive significance of leaf form. Pp. 375407. In: Solbrig, O. T., Jain, S., Johnson, G. B., and Raven, P. H., eds., Topics in Plant Population Biology. Columbia Univ. Press; New York.Google Scholar
Kemp, E. M. 1978. Tertiary climatic evolution and vegetation history in the southeast Indian Ocean region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 24:169208.CrossRefGoogle Scholar
Kemp, E. M. and Barrett, P. J. 1975. Antarctic vegetation and early Tertiary glaciation. Nature. 258:507508.Google Scholar
Knowlton, F. H. 1917. Fossil floras of the Vermejo and Raton formations of Colorado and New Mexico. U.S. Geol. Surv. Prof. Pap. 101:223455.Google Scholar
Leopold, E. B. 1969. Late Cenozoic palynology. Pp. 377438. In: Tschudy, R. H. and Scott, R. A., eds., Aspects of Palynology. Wiley-Interscience; New York.Google Scholar
Li, H. L. 1963. Woody Flora of Taiwan. Livingston Pub. Co. and Morris Arboretum; Narbeth, PA. 974 pp.Google Scholar
MacGinitie, H. D. 1941. A middle Eocene flora from the central Sierra Nevada. Pub. Carnegie Inst. Wash. 534. 178 pp.Google Scholar
MacGinitie, H. D. 1962. The Kilgore flora. Univ. Calif. Pub. Geol. Sci. 35:67158.Google Scholar
Mai, D. H. 1981. Entwicklung und klimatische Differozierung der Laubwalflora Mitteleuropas im Tertiar. Flora Jena. 171:525582.Google Scholar
Muller, J. 1981. Fossil pollen of extant angiosperms. Bot. Rev. 47:1142.Google Scholar
Nichols, D. J. 1973. North American and European species of Momipites (“Engelhardtia”) and related genera. Geoscience and Man. 7:103117.Google Scholar
Nichols, D. J. and Ott, H. L. 1978. Biostratigraphy and evolution of the Momipites-Caryapollenites lineage in the early Tertiary of the Wind River Basin, Wyoming. Palynology. 2:93112.Google Scholar
Page, V. M. 1979. Dicotyledonous wood from the Upper Cretaceous of central California. J. Arnold Arboretum. 60:323349.Google Scholar
Potbury, S. S. 1935. The La Porte flora of Plumas County, California. Pub. Carnegie Inst. Wash. 465:2981.Google Scholar
Rachele, L. D. 1976. Palynology of the Legler lignite: a deposit in the Tertiary Cohansey Formation of New Jersey, U.S.A. Rev. Palaeobot. and Palynology. 22:225252.CrossRefGoogle Scholar
Richards, P. W. 1952. The Tropical Rain Forest. Cambridge Univ. Press; Cambridge. 450 pp.Google Scholar
Roth, I. 1984. Stratification of Tropical Forests as Seen in Leaf Structure. W. Junk; The Hague. 449 pp.Google Scholar
Savin, S. 1977. The history of the earth's surface temperature during the past 100 million years. Ann. Rev. Earth Planet. Sci. 5:319355.Google Scholar
Spicer, R. A. and Parrish, J. T. 1986. Paleobotanical evidence for cool North Polar climates in the mid-Cretaceous (Albian-Cenomanian). Geology. 14:703706.2.0.CO;2>CrossRefGoogle Scholar
Spicer, R. A., Wolfe, J. A., and Nichols, D. J. 1987. Alaskan Cretaceous-Tertiary floras and Arctic origins. Paleobiology. 13:7383.Google Scholar
Szafer, W. 1954. Pliocene flora from the vicinity of Czorsztyn (West Carpathians) and its relationship to the Pleistocene. Prace Inst. Geol. 11:1238.Google Scholar
Tanai, T. 1961. Neogene floral change in Japan. J. Fac. Sci. Hokkaido Univ., ser. 4. 11:119298.Google Scholar
Tanai, T. 1972. Tertiary history of vegetation in Japan. Pp. 235255. In: Graham, A., ed., Floristics and Paleofloristics of Asia and Eastern North America. Elsevier Publ. Co.; Amsterdam.Google Scholar
Upchurch, G. R. Jr. 1984. Cuticle evolution in Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Ann. Missouri Bot. Gard. 71:522550.Google Scholar
Upchurch, G. R. Jr. and Wolfe, J. A. 1987. Mid-Cretaceous to early Tertiary vegetation and climate: evidence from fossil leaves and woods. Pp. 75105. In: Friis, E. M., Chaloner, W. G., and Crane, P. R., eds., The Origins of Angiosperms and Their Biological Consequences. Cambridge Univ. Press; Cambridge.Google Scholar
Wang, C. W. 1961. The forests of China. Harvard Univ. Maria Moors Cabot Found. Pub. 5. 313 pp.Google Scholar
Waring, R. F. and Franklin, J. F. 1979. Evergreen coniferous forests of the Pacific Northwest. Science. 204:13801386.Google Scholar
Wheeler, E., Matten, L. C., and Lee, M. R.In press.Five dicotyledonous woods from the Late Cretaceous of Illinois. Bot. J. Linn. Soc.Google Scholar
Wing, S. L. 1981. A study of paleoecology and paleobotany in the Willwood Formation (early Eocene, Wyoming). Ph.D. dissertation, Yale University; New Haven. 391 pp.Google Scholar
Wolfe, J. A. 1972. An interpretation of Alaskan Tertiary floras. Pp. 201233. In: Graham, A., ed., Floristics and Paleofloristics of Asia and Eastern North America. Elsevier Publ. Co.; Amsterdam.Google Scholar
Wolfe, J. A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Am. Scientist. 66:694703.Google Scholar
Wolfe, J. A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and Australasia and their relation to forests of other regions of the Northern Hemisphere. U.S. Geol. Surv. Prof. Pap. 1106. 37 pp.Google Scholar
Wolfe, J. A. 1981. Paleoclimatic significance of the Oligocene and Neogene floras of northwestern United States. Pp. 79101. In: Niklas, K. J., ed., Paleobotany, Paleoecology, and Evolution, v. 2. Praeger Publ.; New York.Google Scholar
Wolfe, J. A. 1985. Distribution of major vegetational types during the Tertiary. Am. Geophys. Union Geophys. Mon. 32:357375.Google Scholar
Wolfe, J. A. 1987. In press. An overview of the origins of the modern vegetation and flora of the Northern Rocky Mountains. Ann. Missouri Bot. Gard.Google Scholar
Wolfe, J. A. and Poore, R. Z. 1982. Tertiary marine and non-marine climatic trends. Pp. 154158. In: Berger, W. and Crowell, J. C., eds., Climate in Earth History. Natl. Acad. Sci. Studies Geophysics; Washington, D. C.Google Scholar
Wolfe, J. A. and Tanai, T. 1980. The Miocene Seldovia Point flora from the Kenai Group, Alaska. U.S. Geol. Surv. Prof. Pap. 1105. 52 pp.Google Scholar
Wolfe, J. A. and Tanai, T. 1987. Systematics, phylogeny, and geography of Acer (maples) in the Cenozoic of western North America. J. Fac. Sci. Hokkaido Univ. 1246.Google Scholar
Wolfe, J. A. and Upchurch, G. R. Jr. 1986. Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature. 324:148152.Google Scholar
Wolfe, J. A. and Upchurch, G. R. Jr. 1987a. In press. Leaf assemblages across the Cretaceous-Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proc. U.S. Nat. Acad. Sci.CrossRefGoogle Scholar
Wolfe, J. A. and Upchurch, G. R. Jr. 1987b. In press. Late Cretaceous nonmarine climates and vegetation in North America. Palaeogeogr. Palaeoclimat. Palaeoecol.Google Scholar
Wolfe, J. A. and Wehr, W. 1987. Middle Eocene dicotyledonous plants from Republic, northeastern Washington. U.S. Geol. Surv. Bull. 1597. 26 pp.Google Scholar