Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T03:54:00.623Z Has data issue: false hasContentIssue false

Iterative evolution of digitate planktonic foraminifera

Published online by Cambridge University Press:  08 April 2016

Helen K. Coxall
Affiliation:
School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Cardiff, CF10 3AT, United Kingdom. E-mail: [email protected]
Paul N. Pearson
Affiliation:
School of Earth, Ocean and Planetary Sciences, Cardiff University, Main Building, Cardiff, CF10 3AT, United Kingdom. E-mail: [email protected]
Paul A. Wilson
Affiliation:
School of Ocean and Earth Science, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, United Kingdom
Philip F. Sexton
Affiliation:
School of Ocean and Earth Science, National Oceanography Centre, Southampton, European Way, Southampton, SO14 3ZH, United Kingdom

Abstract

Digitate shell morphologies have evolved repeatedly in planktonic foraminifera throughout the Cretaceous and Cenozoic. Digitate species are usually rare in fossil and modern assemblages but show increased abundance and diversity at times during the Cretaceous and middle Eocene. In this paper we discuss the morphology and stratigraphic distribution of digitate planktonic foraminifera and establish the isotopic depth ecology of fossil ones to draw parallels with modern counterparts. δ18O and δ13C values of six extinct and two modern digitate species, from six time slices (Cenomanian, Turonian, Eocene, Miocene, Pleistocene and Holocene) have similar isotopic depth ecologies, consistently registering the most negative δ13C and usually the most positive δ18O compared to coexisting species. These results indicate a similar deep, subthermocline (é150 m) habitat, characterized by lower temperatures, reduced oxygen, and enrichment of dissolved inorganic carbon. This is consistent with water-column plankton studies that provide insight into the depth preferences of the three modern digitate species; in over 70% of observations digitates occurred in nets below 150 m, and down to 2000 m. The correlation between digitate species and subsurface habitats across multiple epochs suggests that elongated chambers were advantageous for survival in a deep mesopelagic habitat, where food is usually scarce. Increased abundance and diversity of digitates in association with some early and mid-Cretaceous oceanic anoxic events, in middle Eocene regions of coastal and equatorial upwelling, and occasionally in some modern upwelling regions, suggests an additional link with episodes of enhanced ocean productivity associated with expansion of the oxygen minimum zone (OMZ). We suggest that the primary function of digitate chambers was as a feeding specialization that increased effective shell size and food gathering efficiency, for survival in a usually food-poor environment, close to the OMZ. Episodes of increased digitate abundance and diversity indicate expansion of the deep-water ecologic opportunity under conditions that were unfavorable to other planktonic species. Our results provide evidence of iterative evolution reflecting common functional constraints on planktonic foraminifera shell morphology within similar subsurface habitats. They also highlight the potential of digitate species to act as indicators of deep watermasses, especially where there was expansion of the OMZ.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aguado, R., Castro, J. M., Company, M., and de Gea, G. A. 1999. Aptian bio-events—an integrated biostratigraphic analysis of the Almadich Formation, Inner Prebetic Domain, SE Spain. Cretaceous Research 20: 663683.Google Scholar
Arthur, M. A., and Natland, J. H. 1979. Carbonaceous sediments in the North and South Atlantic: the role of salinity in stable stratification of Early Cretaceous basins. Pp. 375401 in Talwani, M., Hay, W., and Ryan, W. B. F., eds. Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment. Maurice Ewing Series, Vol. 3. American Geophysical Union, Washington, D.C. CrossRefGoogle Scholar
Banner, F. T., and Blow, W. H. 1959. The classification and stratigraphical distribution of the Globigerinaceae. Palaeontology 2: 127.Google Scholar
Banner, F. T., and Blow, W. H. 1960. The taxonomy, morphology and affinities of the genera included in the subfamily Hastigerininae. Micropaleontology 6: 1931.Google Scholar
Bauch, H. A. 1994. Beella megastoma (Earland) in late Pleistocene Norwegian-Greenland Sea sediments; stratigraphy and melt-water implication. Journal of Foraminiferal Research 24: 171177.CrossRefGoogle Scholar
, A. W. H. 1977. An ecological, zoographic and taxonomic review of Recent planktonic foraminifera. Pp. 1100 in Ramsay, A. T. S., ed. Oceanic micropalaeontology. Academic Press, London.Google Scholar
, A. W. H., and Tolderlund, D. S. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. Pp. 105149 in Funnel, B. M. and Reidel, R. W., eds. The micropaleontology of oceans. Cambridge University Press, Cambridge.Google Scholar
Benson, W. E., Sheridan, R. E., et al., eds. 1984. Sites 389 and 390. Initial Reports of the Deep Sea Drilling Project 44: 69152. U.S. Government Printing Office, Washington, D.C. Google Scholar
Berger, W. H. 1969. Planktonic foraminifera: basic morphology and ecological implications. Journal of Paleontology 43: 13691384.Google Scholar
Berger, W. H., Killingley, J. S., and Vincent, E. 1978. Stable isotopes in deep-sea carbonates: Box Core ERDC-92, Western Equatorial Pacific. Oceanologica Acta 1: 203216.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, I. C. C., and Aubry, M. P. 1995. A Revised Cenozoic Geochronology and Chronostratigraphy. Pp. 129212 in Berggren, W. A., Kent, D. V., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlation: a unified temporal framework for an historical geology. Society for Sedimentary Geology Special Publication 54: 129–212.Google Scholar
Bijma, J., Hemleben, C., Huber, B. T., Erlenkeuser, H., and Kroon, D. 1998. Experimental determination of the ontogenetic stable isotope variability in two morphotypes of Globigerinella siphonifera (d'Orbigny). Marine Micropaleontology 35: 141160.CrossRefGoogle Scholar
Boersma, A., Premoli Silva, I., and Shackleton, N. J. 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography 2: 287331.CrossRefGoogle Scholar
Bolli, H. M. 1957. Planktonic foraminifera from the Eocene Navet and San Fernando formations of Trinidad, B.W.I. U.S. National Museum Bulletin 215: 155172.Google Scholar
BouDagher-Fadel, M. K., Banner, F. T., and Whittaker, J. E. 1997. The early evolutionary history of planktonic foraminifera. Chapman and Hall, London.Google Scholar
Bradshaw, J. S. 1959. Ecology of living planktonic foraminifera in the North and Equatorial Pacific Ocean. Cushman Foundation of Foraminiferal Research Contributions 10: 2564.Google Scholar
Brady, H. B. 1879. Notes on some reticularian Rhizopoda of the Challenger Expedition. II. Additions to the knowledge of porcellanous and hyaline types. Quarterly Journal of the Microscopical Society 19: 261299.Google Scholar
Brady, H. B. 1884. Report on the foraminifera dredge by H.M.S. Challenger, during the years 1873–1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger, Zoology, Vol. 9. Longmans, London.Google Scholar
Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, C. K., Kelly, D. C., Premoli Silva, I., Sliter, W. V., and Lohman, K. C. 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: stable isotopes record at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography 20: 391406.Google Scholar
Caron, M., and Homewood, P. 1983. Evolution of early foraminifers. Marine Micropaleontology 7: 453462.Google Scholar
Church, C. C. 1931. Foraminifera of the Kreyenhagen shale. California Department of Natural Resources, Division of Mines, Report No. 27.Google Scholar
Cicha, I., Rögl, F., Rupp, C., and Ctyoka, J. 1998. Oligocene-Miocene foraminifera of the Central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 549: 1325.Google Scholar
Cifelli, R. 1969. Radiation of Cenozoic foraminifera. Systematic Zoology 18: 154168.Google Scholar
Clark, B. L., and Campbell, A. S. 1942. Eocene radiolarian faunas from the Mount Diablo area, California. Geological Society of America Special Paper 39.CrossRefGoogle Scholar
Cobianchi, M., Luciani, V., and Menegatti, A. 1999. The Selli Level of the Gargano Promontory, Apulia, southern Italy: foraminiferal and calcareous nannofossil data. Cretaceous Research 20: 255269.Google Scholar
Coccioni, R., and Luciani, V. 2004. Planktonic foraminifera and environmental changes across the Bonarelli Event (OAE2, latest Cenomanian) in its type area: a high-resolution study from the Tethyan reference Bottaccione section (Gubbio, Central Italy). Journal of Foraminiferal Research 34: 109129.CrossRefGoogle Scholar
Coccioni, R., and Luciani, V. 2005. Planktonic foraminifers across the Bonarelli Event (OAE2, latest Cenomanian): the Italian record. Palaeogeography, Palaeoclimatology, Palaeoecology 224: 167185.Google Scholar
Coccioni, R., Marsili, A., and Luciani, V. 2006. Cretaceous oceanic anoxic events and radially elongated chambered planktonic foraminifera: paleoecological and paleoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 235: 6692.CrossRefGoogle Scholar
Corfield, R. M., and Cartlidge, J. E. 1991. Isotopic evidence for the depth stratification of fossil and recent Globigerinina: a review. Historical Biology 5: 3763.Google Scholar
Corfield, R. M., Hall, M. A., and Brasier, M. D. 1990. Stable isotope evidence for foraminiferal habitats during the Cenomanian/Turonian ocean anoxic event. Geology 18: 175178.2.3.CO;2>CrossRefGoogle Scholar
Coxall, H. K., and Pearson, P. N. 2006. Taxonomy, biostratigraphy and phylogeny of Hantkeninidae (Clavigerinella, Hantkenina and Cribrohantkenina). Pp. 213252 in Pearson, et al. 2006a.Google Scholar
Coxall, H. K., Pearson, P. N., Shackleton, N. J., and Hall, M. A. 2000. Hantkeninid depth adaptation: an evolving life strategy in a changing ocean. Geology 28: 8790.Google Scholar
Coxall, H. K., Huber, B. T., and Pearson, P. N. 2003. Origin and morphology of the Eocene planktonic foraminifera Hantkenina . Journal of Foraminiferal Research 33: 237261.Google Scholar
Cremades Campos, J. 1978. Una nueva especie del genero Clavigerinella Bolli, Loeblich y Tappan. Cuadernos de Geología, Universidad de Granada 8–9: 175179.Google Scholar
Cruzado Castaneda, J. 1985. Foraminiferos planctonicos del noroeste Peruano. Boletín de la Sociedad Geológica del Peru 74: 145.Google Scholar
de Klasz, I., de Klasz, S., and Ausseil-Badie, J. 1987. Étude systématique des foraminifères du Danien de la Formation des Madeleines de Dakar (Sénégal). Cahiers de Micropaléontologie 2: 2938.Google Scholar
Eicher, D. L., and Worstell, P. 1970. Cenomanian and Turonian foraminifera from the Great Plains, United States. Micropaleontology 16: 269324.Google Scholar
Erbacher, J., Huber, B. T., Norris, R. D., and Markey, M. 2001. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous Period. Nature 409: 325327.Google Scholar
Erbacher, J., Mosher, D. C., and Malone, M. J., eds. 2004. Site 1258. Proceedings of the Ocean Drilling Program, Initial Reports 207. Ocean Drilling Program. College Station, Tex. Available online at http://www-odp.tamu.edu/publications/207_IR/207ir.htm.CrossRefGoogle Scholar
Fairbanks, R. G., Wiebe, P. H., and , A. W. H. 1980. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science 207: 6163.Google Scholar
Fairbanks, R. G., Sverdlove, M., Free, R., Wiebe, P. H., and , A. W. H. 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298: 841844.CrossRefGoogle Scholar
Fleisher, R. S. 1974. Cenozoic planktonic foraminifera and biostratigraphy, Arabian sea (Deep Sea Drilling Project, leg 23A). Pp. 10011071 in Whitmarsh, R. B., Ross, D. A., et al., eds. Initial Reports of Deep-Sea Drilling Project. Government Printing Office, Washington, D.C. Google Scholar
Frerichs, W. E. 1971. Evolution of planktonic foraminifera and paleotemperatures. Journal of Paleontology 45: 963968.Google Scholar
Gage, J. D., and Tyler, P. A. 1991. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge.Google Scholar
Gohrbandt, K. H. A. 1967. Some new planktonic foraminiferal species from the Austrian Eocene. Micropaleontology 13: 319326.Google Scholar
Gowing, M. M., and Wishner, K. F. 1998. Feeding ecology of the copepod Lucicutia aff. L. grandis near the lower interface of the Arabian Sea oxygen minimum zone. Deep-Sea Research Part II: Topical Studies in Oceanography 45: 24332459.Google Scholar
Gradstein, F. M., and Ogg, J. G. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Gross, O. 2001. Foraminifera. Pp. 6075 in Costello, M. J. et al., eds. European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels 50: 60–75. Muséum National d'Histoire Naturelle, Paris.Google Scholar
Hart, M. B. 1980. A water depth model for the evolution of the planktonic Foraminiferida. Nature 286: 252254.Google Scholar
Hayes, J. M. 2001. Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In Valley, J. W. and Cole, D. R., eds. Stable isotopic geochemistry. Reviews in Mineralogy and Geochemistry 43: 225278.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.Google Scholar
Hilbrecht, H. 1996. Extant planktic foraminifera and the physical environment in the Atlantic and Indian Oceans. Mitteilungen aus dem Geologischen Institut der Eidgen. Technischen Hochschule und der Universität Zürich, Neue Folge, No. 300.Google Scholar
Holmes, N. A. 1984. An emendation of the genera Beella Banner and Blow 1959, and Turborotalita Banner and Blow, 1962, with notes on Orcadia Boltovosky and Watanabe, 1982. Journal of Foraminiferal Research 14: 101110.Google Scholar
Houston, R. M., and Huber, B. T. 1998. Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotope trends in some Late Cretaceous planktonic foraminifera. Marine Micropaleontology 34: 2946.Google Scholar
Hsü, K. J., and La Breque, J. L., eds. 1984. Site 523. Initial Reports of the Deep Sea Drilling Project 73: 271322. U.S. Government Printing Office, Washington, D.C. Google Scholar
Huber, M., and Sloan, L. C. 2000. Climatic responses to tropical sea surface temperature changes on a “greenhouse” Earth. Paleoceanography 15: 443450.CrossRefGoogle Scholar
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London A 361: 18851916.CrossRefGoogle ScholarPubMed
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene planktonic foraminifera: a phylogenetic atlas. Hutchinson Ross, Stroudsburg, Penn.Google Scholar
Kroon, D., and Nederbragt, A. J. 1990. Ecology and paleoecology of triserial planktic foraminifera. Marine Micropaleontology 16: 2538.Google Scholar
Kroopnick, P. M. 1985. The distribution of 13C in the world oceans. Deep-Sea Research 32: 5784.Google Scholar
Leckie, R. M. 1989. A paleoceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 73: 107138.Google Scholar
Leckie, R. M., Bralower, T. J., and Cashman, R. 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17: 1329.Google Scholar
Lipps, J. H. 1979. The ecology and paleoecology of planktic foraminifera. Pp. 62104 in Lipps, J. H., Berger, W. H., Buzas, M. A., Douglas, R. G., and Ross, C. A., eds. Foraminiferal ecology and paleoecology. Society of Economic Paleontologists and Mineralogists, Houston, Tex. CrossRefGoogle Scholar
Little, M. G., Schneider, R. R., Kroon, D., Price, B., Bickert, T., and Wefer, G. 1997. Rapid paleoceanographic changes in the Benguela Upwelling System for the last 160,000 years as indicated by abundances of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 130: 135161.Google Scholar
Loeblich, A. R. J., and Tappan, H. 1988. Foraminiferal genera and their classification. Van Nostrand Reinhold, New York.Google Scholar
Longoria, J. F. 1974. Stratigraphic, morphologic and taxonomic studies of Aptian planktonic foraminifera. Revista Española de Micropaleontología, numero extraordinario 107.Google Scholar
Luciani, V., Cobianchi, M., and Jenkyns, H. C. 2001. Biotic and geochemical response to anoxic events: the Aptian pelagic succession of the Gargano Promontory (southern Italy). Geological Magazine 138: 277298.Google Scholar
Lyle, M., Wilson, P. A., and Janecek, T. R., eds. 2002. Site 1218. Proceedings of the Ocean Drilling Program, Initial Reports 199. Ocean Drilling Program, College Station, Tex. Available online at http://www-odp.tamu.edu/publications/199_IR/199ir.htm.Google Scholar
Magniez-Jannin, F. 1998. L'élongation des loges chez les foraminifères planctoniques du Crétacé inférieur: une adaptation à la sous-oxygénation des eaux? (Chamber elongation in Early Cretaceous planktonic foraminifera: an adaptive response to oxygen depleted water?). Comptes Rendus de l'Académie des Sciences, ser. II, Sciences de lat Terre et des Planètes 326: 207213.Google Scholar
Mascle, J., Lohmann, G. P., Clift, P. D., et al., eds. 1996. Site 960. Proceedings of the Ocean Drilling Program, Initial Reports 159: 151215. Ocean Drilling Program, College Station, Tex. Google Scholar
Masters, B. A. 1977. Mesozoic planktonic foraminifera. Pp. 301732 in Ramsay, A. T. S., ed. Oceanic micropalaeontology. Academic Press, London.Google Scholar
McKeel, D. R., and Lipps, J. L. 1972. Calcareous plankton from the Tertiary of Oregon. Palaeogeography, Palaeoclimatology, Palaeoecology 12: 7579.Google Scholar
McKeel, D. R., and Lipps, J. L. 1975. Eocene and Oligocene planktonic foraminifera from the central and southern Oregon coast range. Journal of Foraminiferal Research 5: 15.Google Scholar
McManus, D. A., et al., eds. 1970. Site 42. Initial Reports of the Deep Sea Drilling Project 5: 367410. U.S. Government Printing Office, Washington, D.C. Google Scholar
Mesozoic Planktonic Foraminiferal Working Group (B. T. Huber, coordinator). 2006. Mesozoic planktonic foraminiferal taxonomic dictionary. www.chronos.org.Google Scholar
Moullade, M., Bellier, J.-P., and Tronchetti, G. 2002. Hierarchy of criteria, evolutionary processes and taxonomic simplification in the classification of Lower Cretaceous planktonic foraminifera. Cretaceous Research 23: 111148.Google Scholar
Norris, R. 1991. Biased extinction and evolutionary trends. Paleobiology 17: 388399.Google Scholar
Norris, R. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22: 461480.Google Scholar
Norris, R. 1998. Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals and foraminifera. Pp. 68100 in Norris, and Corfield, 1998.Google Scholar
Norris, R. D., and Corfield, R. M., eds. 1998. Isotope paleobiology and paleoecology. Palaeontological Society Papers, Vol. 4.Google Scholar
Nuttall, W. L. F. 1930. Eocene foraminifera from Mexico. Journal of Paleontology 4: 271293.Google Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T. 1999. Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology 85: 252.Google Scholar
Olsson, R. K., Hemleben, C., Huber, B. T., and Berggren, W. A. 2006a. Taxonomy, biostratigraphy and phylogeny of Globigerina, Globoturborotalita, Subbotina, and Turborotalita. Pp. 111168 in Pearson, et al. 2006a.Google Scholar
Olsson, R., Pearson, P. N., Huber, B. T., and Premoli Silva, I. 2006b. Taxonomy, biostratigraphy, and phylogeny of Eocene Catapsydrax, Globorotaloides, Guembelitriodes, Paragloborotalia, Parasubbotina, and Pseudoglobigerinella n.gen. Pp. 67110 in Pearson, et al. 2006a.Google Scholar
Ortiz, J. D., Mix, A. C., Rugh, W., Watkins, J. M., and Collier, R. W. 1996. Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmental control of oxygen and carbon isotopic disequilibria. Geochimica et Cosmochimica Acta 60: 45094523.Google Scholar
Pearson, P. N. 1995. Planktonic foraminifera biostratigraphy and the development of pelagic caps on guyots in the Marshall Islands group. In Haggerty, J. A., Premoli Silva, I., Rack, F., and McNutt, M. K., eds. Proceedings of the Ocean Drilling Program, Scientific Results 144: 2159. Ocean Drilling Program, College Station, Tex. Google Scholar
Pearson, P. N. 1996. Cladogenetic, extinction and survivorship patterns from a lineage phylogeny: the Paleogene planktonic foraminifera. Micropaleontology 42: 179188.Google Scholar
Pearson, P. N. 1998. Stable isotopes and the study of evolution in planktonic foraminifera. Pp. 138178 in Norris, and Corfield, 1998.Google Scholar
Pearson, P. N., and Shackleton, N. J. 1995. Neogene multispecies planktonic foraminifer stable isotope record, site 871, Limalok Guyot. In Haggerty, J. A., Premoli Silva, I., Rack, F., and McNutt, M. K., eds. Proceedings of the Ocean Drilling Program, Scientific Results 144: 401410. Ocean Drilling Program, College Station, Tex. Google Scholar
Pearson, P. N., Shackleton, N. J., and Hall, M. A. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP Site 523, south Atlantic. Journal of Foraminiferal Research 23: 123140.Google Scholar
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Shackleton, N. J., and Hall, M. A. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413: 481487.Google Scholar
Pearson, P. N., Nicholas, C. J., Singano, J., Bown, P. R., Coxall, H. K., van Dongen, B. E., Huber, B. T., Karega, A., Lees, J. A., Msaky, E., Pancost, R. D., Pearson, M., and Roberts, A. P. 2004. Paleogene and Cretaceous sediment cores from the Kilwa and Lindi areas of coastal Tanzania: Tanzania Drilling Project Sites 1 to 5. Journal of African Earth Sciences 39: 2562.CrossRefGoogle Scholar
Pearson, P. N., Olsson, R. K., Hemleben, C., Huber, B. T., and Berggren, W. A., eds. 2006a. Atlas of Eocene planktonic foraminifera. Cushman Foundation of Foraminiferal Research Special Publication 41. Allen Press, Lawrence, Kans.Google Scholar
Pearson, P. N. P., Premec-Fucek, V., and Premoli Silva, I. 2006b. Taxonomy, biostratigraphy and phylogeny of Eocene Turborotalia. Pp. 433460 in Pearson, et al. 2006a.Google Scholar
Peeters, F. J. C., and Brummer, G.-J. A. 2002. The seasonal and vertical distribution of living planktic foraminifera in the NW Arabian Sea. In Clift, P. D., Kroon, D., Gaedicke, C., and Craig, J., eds. The tectonic and climatic evolution of the Arabian Sea region. Geological Society of London Special Publication 195: 463497.Google Scholar
Peng, T. H., Broecker, W. S., and Berger, W. H. 1979. Rates of benthic mixing in deep-sea cores as determined by radioactive tracers. Quaternary Research 11: 141149.Google Scholar
Petters, V. 1954. Tertiary and Upper Cretaceous foraminifera from Colombia, South America. Contributions from the Cushman Foundation of Foraminiferal Research 5: 3741.Google Scholar
Poore, R. Z., and Brabb, E. E. 1977. Eocene and Oligocene planktonic foraminifer form the Upper Butano sandstone and type San Lorenzo Formation, Santa Cruz Mountains, California. Journal of Foraminiferal Research 7: 249272.Google Scholar
Prell, W. L., and Curry, W. B. 1981. Faunal and isotopic indices of monsoonal upwelling: Western Arabian Sea. Oceanologica Acta 4: 9198.Google Scholar
Premoli Silva, I., and Bolli, H. M. 1973. Late Cretaceous to Eocene planktonic foraminifera and stratigraphy of the Leg 15 Sites in the Caribbean Sea. In Edgar, N. T. and Saunders, J. B., eds. Initial Reports of the Ocean Drilling Program 15: 449549. U.S. Government Printing Office, Washington, D.C. Google Scholar
Premoli Silva, I., and Sliter, W. V. 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. In Barrera, E. and Johnson, C. C., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332: 301328.Google Scholar
Premoli Silva, I., Erba, E., Salvini, G., Locatelli, C., and Verga, D. 1999. Biotic changes in Cretaceous oceanic anoxic events of the Tethys. Journal of Foraminiferal Research 29: 352370.Google Scholar
Quilty, P. G. 1976. Planktonic foraminifera DSDP Leg 34—Nazca Plate. In Yeats, R. D., Hart, S. R., et al., eds. Initial Reports of the Deep Ocean Drilling Project 34: 650651. U.S. Government Printing Office, Washington, D.C. Google Scholar
Reichart, G. J., Lourens, L. J., and Zachariasse, W. J. 1998. Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225,000 years. Paleoceanography 13: 607621.Google Scholar
Rhumbler, L. 1911. Die Foraminiferen (Thalamophoren) der Plankton-Expedition, Teil 1. Die allgemeinen Organisationsverhaltnisse der Foraminiferen. Plankton Expedition Humbold-Stiftung, Ergeben, Vol. 3.Google Scholar
Rohling, E. J. 1994. Review and new aspects concerning the formation of eastern Mediterranean sapropels. Marine Geology 122: 128.Google Scholar
Rohling, E. J., Sprovieri, M., Cane, T., Casford, J. S. L., Cooke, S., Bouloubassi, I., Emeis, K. C., Schiebel, R., Rogerson, M., Hayes, A., Jorissen, F. J., and Kroon, D. 2004. Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5. Marine Micropaleontology 50: 89123.Google Scholar
Rudnicki, M. D., Wilson, P. A. W., and Anderson, W. T. 2001. Assessing the effects of diagenesis and sediment properties on pore fluid profiles, Blake Nose, ODP Leg 171. Paleoceanography 16: 113.Google Scholar
Saito, T., Thompson, P. R., and Breger, D. 1976. Skeletal ultramicrostructure of some elongate-chambered planktonic foraminifera and related species. Pp. 278304 in Takayanagi, Y. and Saito, T., eds. Progress in micropaleontology; selected papers in honor of Prof. Kiyoshi Asano. Micropaleontology Press, New York.Google Scholar
Samanta, B. K. 1973. Planktonic foraminifera from the Paleocene- Eocene succession in the Rakhi Nala, Sulaiman Range, Pakistan. Bulletin of the British Museum (Natural History) Geology 22: 423482.Google Scholar
Schlanger, S. O., and Jenkyns, H. C. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55: 179184.Google Scholar
Schrag, D. P., DePaolo, D. J., and Richter, F. M. 1995. Reconstructing past sea-surface temperatures—correcting for diagenesis of bulk marine carbonate. Geochimica et Cosmochimica Acta 59: 22652278.Google Scholar
Sexton, P. F., Wilson, P. A., and Pearson, P. N. 2006. Microstructural and geochemical perspectives on planktic foraminiferal preservation—‘glassy’ versus ‘frosty.’ Geochemistry, Geophysics, Geosystems 7: Q12P19, doi: 10.1029/2006GC001291.Google Scholar
Spero, H. J. 1998. Life history and stable isotope geochemistry of planktonic foraminifera. Pp. 736 in Norris, and Corfield, 1998.Google Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific variability in the planktonic foraminifera Globigerinoides sacculifer: results from laboratory experiments. Marine Micropaleontology 22: 221234.Google Scholar
Spero, H. J., and Lea, D. W. 1996. Experimental determination of stable isotope variability in Globigerina bulloides: implications for palaeoceanographic reconstructions. Marine Micropaleontology 28: 231246.CrossRefGoogle Scholar
Spero, H. J., and Williams, D. F. 1989. Opening the carbon isotope ‘vital effect’ black box. I. Seasonal temperatures in the euphotic zone. Paleoceanography 4: 593601.Google Scholar
Spero, H. J., Lerche, I., and Williams, D. F. 1991. Opening the carbon isotope ‘vital effect’ black box. 2. Quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography 6: 639655.CrossRefGoogle Scholar
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390: 497500.Google Scholar
Srinivasan, M. S., and Kennett, J. P. 1975. The status of Bolliella, Beella, Prontentella and related planktonic foraminifera based on the well ultra structure. Journal of Foraminiferal Research 5: 155165.Google Scholar
Stainforth, R. M. 1948. Applied micropaleontology in coastal Ecuador. Journal of Paleontology 22: 113151.Google Scholar
Steineck, P. L., and Fleisher, R. L. 1978. Towards the classical evolutionary reclassification of Cenozoic Globigerinacea (Foraminiferida). Journal of Paleontology 52: 618635.Google Scholar
Stuiver, M., and Reimer, P. J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215230.Google Scholar
Subbotina, N. N. 1958. New genera and species of foraminifera. In Bykova, N. K., et al., eds. Microfauna of the USSR, Vol. 9. Trudy, VNIGRI, new series 115: 5105 (All-Union Petroleum Scientific Research Geological Prospecting Institute, Leningrad). [Russian.] Google Scholar
Suess, E., von Huene, R., et al. eds. 1988. Site 683. Proceedings of the Ocean Drilling Program, Initial Reports 112: 437524. Ocean Drilling Program, College Station, Tex. Google Scholar
Summerhayes, C. P., Prell, W. L., and Emeis, K. C. 1992. Evolution of upwelling systems since the Early Miocene. Geological Society of London Special Publication 64.Google Scholar
Verga, D., and Premoli Silva, I. 2002. Early Cretaceous planktonic foraminifera from the Tethys: the genus Leupoldina . Cretaceous Research 23: 189212.Google Scholar
Watkins, J. M. 2003. Foraminifera species abundances from tow TT011.8-MOC68, PANGAEA, doi: 10.1594/PANGAEA.123041.Google Scholar
Wilson, P. A., and Norris, R. D. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412: 425429.CrossRefGoogle ScholarPubMed
Wilson, P. A., Norris, R. D., and Cooper, M. J. 2002. Testing the mid-Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology 30: 607610.Google Scholar
Wishner, K. F., and Gowing, M. M. 1992. The role of deep-sea zooplankton in carbon cycles. Pp. 2943 in Rowe, G. T. and Pariente, V., eds. Deep-sea food chains and the global carbon cycle. Kluwer Academic, Dordrecht.Google Scholar
Wishner, K. F., Ashjian, C. J., Gelfman, C., Gowing, M. M., Kann, L., Levin, L. A., Mullineaux, L. S., and Saltzman, J. 1995. Pelagic and benthic ecology of the lower interface of the Eastern Tropical Pacific oxygen minimum zone. Deep-Sea Research Part I, Oceanographic Research Papers 42: 93115.CrossRefGoogle Scholar
Zeebe, R. E. 1999. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochimica et Cosmochimica Acta 63: 20012007.Google Scholar
Zeebe, R. E., and Westbroek, P. 2003. A simple model for the CaCO3 saturation state of the ocean: the “Strangelove,” the “Neritan,” and the “Cretan” ocean. Geochemistry, Geophysics, Geosystems 4(12). doi: 10.1029/2003GC000538.Google Scholar
Ziegler, A. M., Rowley, D. B., Lottes, A. L., Sahagrian, D. L., Hulver, M. L., and Gierlowski, A. L. 1985. Palaeogeographic interpretation: with an example from the mid Cretaceous. Annual Review of Earth and Planetary Sciences 113: 385425.Google Scholar