Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T15:39:17.736Z Has data issue: false hasContentIssue false

Intercontinental variation in mass extinction patterns: influence of biogeographic structure

Published online by Cambridge University Press:  08 February 2016

Stephen R. Westrop*
Affiliation:
Department of Geological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada

Abstract

Studies of the fates of clades during mass extinctions at the end of the Cretaceous and near the Cambrian-Ordovician boundary have indicated that geographically widespread groups have a much higher probability of survival than narrowly distributed groups. If biogeographic distribution does play a significant role in influencing the outcome of extinction events, then geographic variability in extinction intensity should be mirrored by patterns of endemism. A comparison of data for the terminal Cambrian extinction indicates that survival of trilobite families in Kazakhstan was significantly greater than in North America. As predicted, the Kazakh sequence was characterized by a significantly larger number of pandemic families. The Baltic Province, which includes Scandinavia, England, and Wales, was composed entirely of pandemic groups and did not suffer any trilobite extinction at the family level. The results are consistent with the suggestion that latitudinal variation in extinction magnitude may be the result of differences in biogeographic structure.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, P. M., Jackson, A. A., and Rushton, A.W.A. 1981. The stratigraphy of the Mawddach Group in the Cambrian succession of North Wales. Proceedings of the Yorkshire Geological Society 43:295329.CrossRefGoogle Scholar
Apollonov, M. K., and Chugaeva, M. N. 1983. Some trilobites from the Cambrian-Ordovician boundary interval from the Batyrbay Ravine in Malyi Karatau. Pp. 6690. In Apollonov, M. K., Bandaletov, S. M., and Ivshin, M. K., (eds.), Lower Paleozoic Stratigraphy and Paleontology of Kazakhstan. Kazakhstan SSR Academy of Sciences, K.I. Satpaev Institute of Geological Sciences; Alma Ata [in Russian].Google Scholar
Apollonov, M. K., Chugaeva, M. N., and Dubinina, S. V. 1981. The Cambrian-Ordovician boundary in the Malyi Karatau Range, south Kazakhstan. Pp. 1517. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. United States Geological Survey, Open File Report 81-743.Google Scholar
Apollonov, M. K., Chugaeva, M. N., and Dubinina, S. V. 1984. Trilobites and Conodonts from the Batyrbay Section (Uppermost Cambrian-Lower Ordovician) in the Malyi Karatau Range. Atlas of Paleontological Plates). Kazakhstan SSR Academy of Sciences, K. I. Satpaev Institute of Geological Sciences; Alma Ata.Google Scholar
Apollonov, M. K., Chugaeva, M. N., Dubinina, S. V., and Zhemchuznikov, V. G. 1988. Batyrbay Section, southern Kazakhstan, U.S.S.R.—the potential stratotype for the Cambrian-Ordovician boundary. Geological Magazine 125:445449.CrossRefGoogle Scholar
Briggs, D.E.G., Fortey, R. A., and Clarkson, E.K.N. 1988. Extinction and the fossil record of arthropods. Pp. 171209. In Larwood, G. P. (ed.), Extinction and Survival in the Fossil Record. Systematics Association Special Volume 34.Google Scholar
Bruton, D. M. 1983. Cambrian origins of the odontopleurid trilobites. Palaeontology 26:875885.Google Scholar
Bruton, D. M., Erdtmann, B.-D., and Koch, L. 1982. The Naersnes section, Oslo region: a candidate for the Cambrian-Ordovician boundary stratotype at the base of the Tremadoc Series. Pp. 6169. In Bassett, M. G., and Dean, W. T. (eds.), The Cambrian-Ordovician Boundary: Sections, Fossil Distributions and Correlation. National Museum of Wales, Geological Series 3.Google Scholar
Chatterton, B.D.E., and Speyer, S. E. 1989. Larval ecology, life history strategies and patterns of extinction and survivorship among Ordovician trilobites. Paleobiology 15:118132.CrossRefGoogle Scholar
Chugaeva, M. N., and Apollonov, M. K. 1982. The Cambrian-Ordovician boundary in the Batyrbaisai Section, Malyi Karatau Range, Kazakhstan, U.S.S.R. Pp. 7785. In Bassett, M. G., and Dean, W. T. (eds.), The Cambrian-Ordovician Boundary: Sections, Fossil Distributions and Correlation. National Museum of Wales, Geological Series 3.Google Scholar
Cope, J.C.W., Fortey, R. A., and Owens, R. M. 1978. Newly discovered Tremadoc rocks in the Camarthen district, South Wales. Geological Magazine 115:195198.CrossRefGoogle Scholar
Druce, E. C., Shergold, J. H., and Radke, B. M. 1982. A reassessment of the Cambrian-Ordovician boundary section at Black Mountain, western Queensland, Australia. Pp. 193209. In Bassett, M. G., and Dean, W. T. (eds.), The Cambrian-Ordovician Boundary: Sections, Fossil Distributions and Correlation. National Museum of Wales, Geological Series 3.Google Scholar
Ergaliev, G. K. 1980. Trilobites of the Middle and Upper Cambrian of Malyi Karatau. Kazakhstan SSR Academy of Sciences, K. I. Satpaev Institute of Geological Sciences; Alma Ata[in Russian].Google Scholar
Ergaliev, G. K. 1983. New trilobites from the Upper Cambrian and Lower Ordovician from Bolyshoy Karatau and Ulutau. Pp. 3566. In Apollonov, M. K., Bandaletov, S. M., and Ivshin, M. K. (eds.), Lower Paleozoic Stratigraphy and Paleontology of Kazakhstan. Kazakhstan SSR Academy of Sciences, K. I. Satpaev Institute of Geological Sciences; Alma Ata[in Russian].Google Scholar
Erwin, D.H. 1989. Regional paleoecology of Permian gastropod genera, southwestern United States and the End-Permian mass extinction. Palaios 4:439452.CrossRefGoogle Scholar
Fortey, R. A. 1983. Cambrian-Ordovician boundary trilobites from western Newfoundland and their phylogenetic significance. Special Papers in Palaeontology 30:179211.Google Scholar
Fortey, R. A., and Chatterton, B.D.E. 1988. Classification of the trilobite suborder Asaphina. Palaeontology 31:165222.Google Scholar
Henningsmoen, G. 1957. The trilobite family Olenidae. With descriptions of Norwegian material and remarks on the Olenid and Tremadocian Series. Norsk Videnskaps-Akademi i Oslo, Matematisk-Naturvidenskapelig Klasse, Skrifter 1:1303.Google Scholar
Henningsmoen, G. 1958. The Upper Cambrian faunas of Norway, with descriptions of non-blenid invertebrate fossils. Norsk Geologisk Tidsskrift 38:179196.Google Scholar
Hughes, N. C., and Rushton, A.W.A. 1990. Computer-aided restoration of a Late Cambrian ceratopygid trilobite from Wales and its phylogenetic implications. Palaeontology 33:429445.Google Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D., Flessa, K. W., and Valentine, J. W. 1985. Biogeography and paleobiology. Paleobiology 11:7590.CrossRefGoogle Scholar
James, N. P., and Stevens, R. K. 1986. Stratigraphy and correlation of the Cambro-Ordovician Cow Head Group, western Newfoundland. Geological Survey of Canada Bulletin 366.Google Scholar
Kindle, C. H. 1982. The C. H. Kindle collection: Middle Cambrian to Lower Ordovician trilobites from the Cow Head Group, western Newfoundland. Geological Survey of Canada Paper 82-1C:117.Google Scholar
Lake, P. 1906-1946. A Monograph of the British Cambrian Trilobites. Palaeontographical Society Monograph; London.Google Scholar
Ludvigsen, R., Westrop, S. R., and Kindle, C. H. 1989. Sunwaptan (Upper Cambrian) trilobites of the Cow Head Group, western Newfoundland, Canada. Palaeontographica Canadiana 6.Google Scholar
Nikolaisen, F., and Henningsmoen, G. 1985. Upper Cambrian and lower Tremadoc olenid trilobites from the Digermul peninsula, Finnmark, northern Norway. Norges geologiske Undersøkelse Bulletin 400:149.Google Scholar
Owens, R. M., Fortey, R. A., Cope, J.C.W., Rushton, A.W.A., and Bassett, M. G. 1982. Tremadoc faunas from the Camarthen district, South Wales. Geological Magazine 119:138.CrossRefGoogle Scholar
Qian, Y.-Y. 1986. Trilobites. Pp. 255313. In Chen, J.-Y. (ed.), Aspects of the Cambrian-Ordovician Boundary in Dayangcha, China. China Prospect Publishing House; Beijing, China.Google Scholar
Robertson, D.B.R., Brenchley, P. J., and Owen, A. W. 1990. Ecological disruption close to the Ordovician-Silurian boundary. Abstracts for the International Meeting on Global Bio-events and Precambrian-Cambrian Event Stratigraphy (I.G.C.P. Projects 216 and 303), Oxford.Google Scholar
Rushton, A.W.A. 1982. The biostratigraphy and correlation of the Merioneth-Tremadoc Series boundary in North Wales. Pp. 4159. In Bassett, M. G., and Dean, W. T. (eds.), The Cambrian-Ordovician boundary: Sections, Fossil Distributions and Correlation. National Museum of Wales, Geological Series 3.Google Scholar
Rushton, A.W.A. 1988. Tremadoc trilobites from the Skiddaw Group in the English Lake District. Palaeontology 31:677698.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., van der Voo, R., and Zeigler, A. M. 1979. Paleozoic base maps. Journal of Geology 87:217277.CrossRefGoogle Scholar
Shergold, J. H. 1971. Late Upper Cambrian trilobites from the Gola Beds, western Queensland. Bureau of Mineral Resources, Geology and Geophysics Bulletin 112.Google Scholar
Shergold, J. H. 1975. Late Cambrian and Early Ordovician trilobites from the Burke River Structural Belt, western Queensland, Australia. Bureau of Mineral Resources, Geology and Geophysics Bulletin 153.Google Scholar
Shergold, J. H. 1982. Late Cambrian trilobites from the Chatsworth Limestone, western Queensland. Bureau of Mineral Resources, Geology and Geophysics Bulletin 186.Google Scholar
Shergold, J. H. 1988. Review of trilobite biofacies distributions at the Cambrian-Ordovician boundary. Geological Magazine 125:363380.CrossRefGoogle Scholar
Shergold, J. H., Cooper, R. A., Druce, E. C., and Webby, B. D. 1982. Synopsis of selected sections at the Cambrian-Ordovician boundary in Australia, New Zealand and Antarctica. Pp. 211227. In Bassett, M. G., and Dean, W. T. (eds.), The Cambrian-Ordovician Boundary: Sections, Fossil Distributions and Correlation. National Museum of Wales, Geological Series 3.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry. Second Edition.W. H. Freeman and Company; San Francisco.Google Scholar
Taylor, M. E. 1977. Late Cambrian of western North America: trilobite biofacies, environmental significance and biostratigraphic implications. Pp. 297345. In Kauffman, E. G., and Hazel, J. E. (eds.), Concepts and Methods of Biostratigraphy. Dowden, Hutchison and Ross; Stroudsburg, Pennsylvania.Google Scholar
Taylor, M. E., and Forester, R. M. 1979. Distributional model for marine isopod crustaceans and its bearing on early Paleozoic biogeography and continental drift. Geological Society of America Bulletin 90:405413.2.0.CO;2>CrossRefGoogle Scholar
Westrop, S. R. 1989. Macroevolutionary implications of mass extinction—evidence from an Upper Cambrian stage boundary. Paleobiology 15:4652.CrossRefGoogle Scholar
Westrop, S. R., and Ludvigsen, R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology 13:8499.CrossRefGoogle Scholar
Zhang, W., and Jell, P. A. 1987. Cambrian Trilobites of North China. Chinese Cambrian Trilobites Housed in the Smithsonian Institution. Science Press; Beijing.Google Scholar