Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T12:52:22.095Z Has data issue: false hasContentIssue false

The influence of lithification on Cenozoic marine biodiversity trends

Published online by Cambridge University Press:  08 April 2016

Austin J. W. Hendy*
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221. E-mail: [email protected]

Abstract

Recent research has corroborated the long-held view that the diversity of genera within benthic marine communities has increased from the Paleozoic to the Cenozoic as much as three- to fourfold, after mitigating for such biasing influences as secular variation in time-averaging and environmental coverage. However, these efforts have not accounted for the considerable increase in the availability of unlithified fossiliferous sediments in strata of late Mesozoic and Cenozoic age. Analyses presented here on the Cenozoic fossil record of New Zealand demonstrate that unlithified sediments not only increase the amount of fossil material and hence the observed diversity therein, but they also preserve a pool of taxa that is compositionally distinct from lithified sediments. The implication is that a large component of the difference in estimates of within-community diversity between Paleozoic and Cenozoic assemblages may relate to the increased availability of unlithified sediments in the Cenozoic.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A., and Briggs, D. E. G. 1991. The taphonomy of soft-bodied animals. Pp. 120140 in Donovan, S. K., ed. The processes of fossilization. Columbia University Press, New York.Google Scholar
Alroy, J. 2000. Successive approximations of diversity curves: ten more years in the library. Geology 28:10231026.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.CrossRefGoogle ScholarPubMed
Beu, A. G., and Maxwell, P. A. 1990. Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Paleontological Bulletin 58.Google Scholar
Bouchet, P., Lozouet, P., Maestrati, P., and Heros, V. 2002. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biological Journal of the Linnean Society 75:421436.CrossRefGoogle Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences 31:275301.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase through the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling-standardization. Paleobiology 30:666686.2.0.CO;2>CrossRefGoogle Scholar
Cherns, L., and Wright, V. P. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.2.0.CO;2>CrossRefGoogle Scholar
Coan, E. V., Scott, P. V., and Bernard, F. R. 2000. Bivalve seashells of western North America. Santa Barbara Museum of Natural History, Santa Barbara, Calif. Google Scholar
Cooper, R. A., Beu, A. G., Cooper, J. S., Jones, C. M., Marshall, B., Maxwell, P. A. 2006. Completeness of the fossil record: estimating losses due to small body size. Geology 34:241244.CrossRefGoogle Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358361.CrossRefGoogle ScholarPubMed
Crampton, J. S., Beu, A. G., Cooper, R. A., Cooper, J. S., Foote, M., Jones, C. M., Marshall, B., Matcham, I., and Maxwell, P. A. 2006. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.CrossRefGoogle Scholar
Fleming, C. A. 1966. Marwick's illustrations of New Zealand shells, with a checklist of New Zealand Cenozoic Mollusca. Department of Scientific and Industrial Research Bulletin 173.Google Scholar
Hendy, A. J. W., and Kamp, P. J. J. 2004. Late Miocene-Early Pliocene biofacies of Wanganui and Taranaki Basins, New Zealand. New Zealand Journal of Geology and Geophysics 47:769785.CrossRefGoogle Scholar
Hendy, A. J. W., and Kamp, P. J. J. 2007. Paleoecology of Late Miocene-Early Pliocene sixth-order glacioeustatic sequences in the Manutahi-1 core, Wanganui-Taranaki Basin, New Zealand. Palaios 22:325337.CrossRefGoogle Scholar
Hendy, A. J. W., Kamp, P. J. J., and Vonk, A. J. 2006. Cool-water shell bed taphofacies from Miocene-Pliocene shelf sequences: utility in sequence stratigraphic analyses. Geological Society of London Special Publication 255:285307.CrossRefGoogle Scholar
Jablonski, D., and Sepkoski, J. J. Jr. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:13671378.CrossRefGoogle ScholarPubMed
Kidwell, S. M., and Flessa, F. W. 1995. The quality of the fossil record: populations, species, and communities. Annual Review of Earth and Planetary Sciences 24:433464.CrossRefGoogle Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Wood, S. L. Barbour, and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology 32:533561.CrossRefGoogle Scholar
Miller, A. I. 2000. Conversations about Phanerozoic global diversity. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):5373.CrossRefGoogle Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.CrossRefGoogle ScholarPubMed
Moore, R. C. 1969. Treatise on invertebrate paleontology. Part N, Mollusca 6, Bivalvia. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Newell, N. D. 1959. Adequacy of the fossil record. Journal of Paleontology 33:488499.Google Scholar
Paul, C. R. C. 1998. An overview of the completeness of the fossil record. Pp. 122 in Donovan, S. K. and Paul, C. R. C., eds. The adequacy of the fossil record. Wiley, Chichester, U.K. Google Scholar
Peters, S. E. 2004. Evenness of Cambrian-Ordovician benthic marine communities in North America. Paleobiology 30:325346.2.0.CO;2>CrossRefGoogle Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Powell, A. W. B. 1979. New Zealand Mollusca: marine, land and freshwater shells. Collins, Auckland, New Zealand. Google Scholar
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology 30:331334.2.0.CO;2>CrossRefGoogle Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma; where does all the diversity go? Paleobiology 14:221234.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1997. Biodiversity: past, present, and future. Journal of Paleontology 71:533539.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.CrossRefGoogle Scholar
Sessa, J. A., Patzkowsky, M. E., and Bralower, T. J. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology (in press).CrossRefGoogle Scholar
Signor, P. W., Lipps, J. H., and Schultz, P. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. In Silver, I. and Silver, P., eds. Geologic implications of impacts of large asteroids and comets on the earth . Geological Society of America Special Paper 190:291296.CrossRefGoogle Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed