Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T08:55:34.353Z Has data issue: false hasContentIssue false

Growth allometry and dental topography in Upper Triassic conodonts support trophic differentiation and molar-like element function

Published online by Cambridge University Press:  13 March 2023

Valentin Kelz
Affiliation:
Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany. E-mail: [email protected], [email protected].
Pauline Guenser*
Affiliation:
Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany. E-mail: [email protected], [email protected].
Manuel Rigo
Affiliation:
Department of Geosciences, University of Padova, 35131 Padova, Veneto, Italy. E-mail: [email protected]
Emilia Jarochowska
Affiliation:
Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany. E-mail: [email protected], [email protected].
*
*Corresponding author.

Abstract

Conodont elements have high rates of morphological evolution, but the drivers of this disparity are debated. Positive allometric relationships between dimensions of food-processing surfaces and entire P1 elements have been used to argue that these elements performed mechanical digestion. If involved in food processing, the surface of the element should grow at a rate proportional to the increase in energy requirements of the animal. This inference of function relies on the assumption that the energy requirements of the animal grew faster (≅ mass0.75) than the tooth area (≅ mass0.67). We reevaluate this assumption based on metabolic rates across animals and calculate the allometry in platform-bearing P1 elements of Late Triassic co-occurring taxa, Metapolygnathus communisti and Epigondolella rigoi, using 3D models of ontogenetic series. Positive allometry is found in platform and element dimensions in both species, supporting a grasping-tooth hypothesis, based on the assumption that metabolic rate in conodonts scaled with body mass similarly to that in fish and ectotherms. We also calculate the curvature of the P1 platform surface using the Dirichlet normal energy (DNE) as a proxy for diet. DNE values increase with body mass, supporting the assumption that conodont metabolic rates increased faster than mass0.67. We finally find that adults in both taxa differ in their food bases, which supports trophic diversification as an important driver of the remarkable disparity of conodont elements.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Netherlands. E-mail: [email protected]

References

Literature Cited

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B.. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296317.CrossRefGoogle Scholar
Aldridge, R. J., Smith, M. P., Norby, R. D., and Briggs, D. E. G.. 1987. The architecture and function of Carboniferous polygnathacean conodont apparatuses. Palaeobiology of Conodonts 1987:6375.Google Scholar
Assemat, A., Thiery, G., Lieffroy, T., and Girard, C.. 2022. 3D topography as tool for shape discrimination of conodont elements. Fifth International Conodont Symposium (ICOS5), Wuhan, China, 24–27 June 2022.Google Scholar
Balter, V., Martin, J. E., Tacail, T., Suan, G., Renaud, S., and Girard, C.. 2019. Calcium stable isotopes place Devonian conodonts as first level consumers. Geochemical Perspectives Letters 10:3639.CrossRefGoogle Scholar
Berthaume, M. A., and Schroer, K.. 2017. Extant ape dental topography and its implications for reconstructing the emergence of early Homo. Journal of Human Evolution 112:1529.CrossRefGoogle ScholarPubMed
Bokma, F. 2004. Evidence against universal metabolic allometry. Functional Ecology 18:184187.CrossRefGoogle Scholar
Bunn, J. M., Boyer, D. M., Lipman, Y., St. Clair, E. M., Jernvall, J., and Daubechies, I.. 2011. Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. American Journal of Physical Anthropology 145:247261.CrossRefGoogle ScholarPubMed
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.. 2008. Meshlab: an open-source mesh processing tool. Eurographics Italian Chapter Conference 2008:129136.Google Scholar
Clarke, A., and Johnston, N. M.. 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. Journal of Animal Ecology 68:893905.CrossRefGoogle Scholar
Collins, K. S., and Gazley, M. F.. 2017. Does my posterior look big in this? The effect of photographic distortion on morphometric analyses. Paleobiology 43:508520.CrossRefGoogle Scholar
Cuesta-Torralvo, E., Pacheco, D., Martínez, L. M., Romero, A., Umbelino, C., Avià, Y., and Pérez-Pérez, A.. 2021. Three-dimensional proxies to dental wear characterization in a known age-at-death skeletal collection. Journal of Archaeological Method and Theory 28:12611275.CrossRefGoogle Scholar
Dodds, P. S., Rothman, D. H., and Weitz, J. S.. 2001. Re-examination of the “3/4-law” of Metabolism. Journal of Theoretical Biology 209:927.CrossRefGoogle ScholarPubMed
Donoghue, P. C. J. 1998. Growth and patterning in the conodont skeleton. Philosophical Transactions of the Royal Society of London B 353:633666.CrossRefGoogle Scholar
Donoghue, P. C. 2001a. Microstructural variation in conodont enamel is a functional adaptation. Proceedings of the Royal Society of London B 268:16911698.CrossRefGoogle ScholarPubMed
Donoghue, P. C. J. 2001b. Conodonts meet cladistics: recovering relationships and assessing the completeness of the conodont fossil record. Palaeontology 44:6593.CrossRefGoogle Scholar
Donoghue, P. C. J., and Purnell, M. A.. 1999a. Growth, function, and the conodont fossil record. Geology 27:251254.2.3.CO;2>CrossRefGoogle Scholar
Donoghue, P. C. J., and Purnell, M. A.. 1999b. Mammal-like occlusion in conodonts. Paleobiology 25:5874.Google Scholar
Donoghue, P. C. J., Purnell, M. A., and Aldridge, R. J.. 1998. Conodont anatomy, chordate phylogeny and vertebrate classification. Lethaia 31:211219.CrossRefGoogle Scholar
Du, Y., Chiari, M., Karádi, V., Nicora, A., Onoue, T., Pálfy, J., Roghi, G., Tomimatsu, Y., and Rigo, M.. 2020. The asynchronous disappearance of conodonts: new constraints from Triassic–Jurassic boundary sections in the Tethys and Panthalassa. Earth-Science Reviews 203:103176.CrossRefGoogle Scholar
Dzik, J. 1991. Evolution of oral apparatuses in the conodont chordates. Acta Palaeontologica Polonica 36:265323.Google Scholar
Dzik, J. 2008. Evolution of morphogenesis in 360-million-year-old conodont chordates calibrated in days. Evolution and Development 10:769777.CrossRefGoogle ScholarPubMed
Dzik, J. 2015. Evolutionary roots of the conodonts with increased number of elements in the apparatus. Transactions of the Royal Society of Edinburgh (Earth and Environmental Science) 106:2953.CrossRefGoogle Scholar
Dzik, J. 2021. Protaspis larva of an aglaspidid-like arthropod from the Ordovician of Siberia and its habitat. Arthropod Structure and Development 61:101026.CrossRefGoogle ScholarPubMed
Epstein, A. G., Epstein, J. B., and Harris, L. D.. 1977. Conodont color alteration: an index to organic metamorphism. United States Geological Survey Professional Paper 995:1–27.CrossRefGoogle Scholar
Feldman, H. A., and McMahon, T. A.. 1983. The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respiration Physiology 52:149–163.CrossRefGoogle Scholar
Foote, M., and Sepkoski, J. J.. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.CrossRefGoogle ScholarPubMed
Fulwood, E. L. 2020. Ecometric modelling of tooth shape and precipitation gradients among lemurs on Madagascar. Biological Journal of the Linnean Society 129:2640.Google Scholar
Gabbott, S. E., Aldridge, R. J., and Theron, J. N.. 1995. A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa. Nature 374:800803.CrossRefGoogle Scholar
Ginot, S., and Goudemand, N.. 2019. Conodont size, trophic level, and the evolution of platform elements. Paleobiology 45:458468.CrossRefGoogle Scholar
Glazier, D. S. 2007. 22.1. Ecology of metabolic scaling in animals and plants. Seventh International Congress of Comparative Physiology and Biochemistry, Salvador, Bahia, Brazil, 1216 August 2007. Comparative Biochemistry & Physiology, Part A: Molecular and Integrative Physiology, Special Issue 148(Suppl.):99.Google Scholar
Glazier, D. S. 2009. Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. Journal of Comparative Physiology B 179:821828.CrossRefGoogle ScholarPubMed
Godfrey, L. R., Winchester, J. M., King, S. J., Boyer, D. M., and Jernvall, J.. 2012. Dental topography indicates ecological contraction of lemur communities. American Journal of Physical Anthropology 148:215227.CrossRefGoogle ScholarPubMed
Goudemand, N., Orchard, M. J., Urdy, S., Bucher, H., and Tafforeau, P.. 2011. Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrates. Proceedings of the National Academy of Sciences USA 108:87208724.CrossRefGoogle ScholarPubMed
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41:587638.CrossRefGoogle ScholarPubMed
Gould, S. J. 1975. On the scaling of tooth size in mammals. American Zoologist 15:353362.CrossRefGoogle Scholar
Gould, S. J. 1979. An allometric interpretation of species-area curves: the meaning of the coefficient. American Naturalist 114:335343.CrossRefGoogle Scholar
Guenser, P., Souquet, L., Dolédec, S., Mazza, M., Rigo, M., and Goudemand, N.. 2019. Deciphering the roles of environment and development in the evolution of a Late Triassic assemblage of conodont elements. Paleobiology 45:440457.CrossRefGoogle Scholar
Harper, T., Parras, A., and Rougier, G. W.. 2019. Reigitherium (Meridiolestida, Mesungulatoidea) an enigmatic Late Cretaceous mammal from Patagonia, Argentina: morphology, affinities, and dental evolution. Journal of Mammalian Evolution 26:447478.CrossRefGoogle Scholar
Hayami, I., and Matsukuma, A.. 1970. Variation of bivariate characters from the standpoint of allometry. Palaeontology 13:588605.Google Scholar
Hayashi, S. 1968. The Permian conodonts in chert of the Adoyama Formation, Ashio Mountains, central Japan. Earth Science 2:6377.Google Scholar
Heusner, A. A. 1982. Energy metabolism and body size I. Is the 0.75 mass exponent of Kleiber's equation a statistical artifact? Respiration Physiology 48:112.Google ScholarPubMed
Hollander, M., and Wolfe, D. A.. 1973. Nonparametric statistical methods, Vol. 751. Wiley, New York.Google Scholar
Jones, D., Evans, A. R., Rayfield, E. J., Siu, K. K. W., and Donoghue, P. C. J.. 2012a. Testing microstructural adaptation in the earliest dental tools. Biology Letters 8:952955.CrossRefGoogle ScholarPubMed
Jones, D., Evans, A. R., Siu, K. K. W., Rayfield, E. J., and Donoghue, P. C. J.. 2012b. The sharpest tools in the box? Quantitative analysis of conodont element functional morphology. Proceedings of the Royal Society of London B 279:28492854.Google ScholarPubMed
Kelz, V., Guenser, P., Rigo, M., and Jarochowska, E.. 2022. Growth allometry and dental topography in Upper Triassic conodonts support trophic differentiation and molar-like element function. Dataset retrieved from osf.io/283wq, accessed 18 January 2023.Google Scholar
Kleiber, M. 1932. Body size and metabolism. Hilgardia 6:315353.CrossRefGoogle Scholar
Klingenberg, C. P. 1996. Multivariate Allometry. Pp. 2349 in Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., and Slice, D. E., eds. Advances in morphometrics. Springer US, Boston.CrossRefGoogle Scholar
Klug, C., Kröger, B., Kiessling, W., Mullins, G. L., Servais, T., Fryda, J., Korn, D., and Turner, S.. 2010. The Devonian nekton revolution. Lethaia 43:465477.CrossRefGoogle Scholar
Lang, A. J., Engler, T., and Martin, T.. 2022. Dental topographic and three-dimensional geometric morphometric analysis of carnassialization in different clades of carnivorous mammals (Dasyuromorphia, Carnivora, Hyaenodonta). Journal of Morphology 283:91108.CrossRefGoogle ScholarPubMed
Li, P., Morse, P. E., and Kay, R. F.. 2020. Dental topographic change with macrowear and dietary inference in Homunculus patagonicus. Journal of Human Evolution 144:102786.CrossRefGoogle ScholarPubMed
López-Aguirre, C., Hand, S. J., Simmons, N. B., and Silcox, M. T.. 2022. Untangling the ecological signal in the dental morphology in the bat superfamily Noctilionoidea. Journal of Mammalian Evolution 29:531545.CrossRefGoogle Scholar
López-Torres, S., Selig, K. R., Prufrock, K. A., Lin, D., and Silcox, M. T.. 2018. Dental topographic analysis of paromomyid (Plesiadapiformes, Primates) cheek teeth: more than 15 million years of changing surfaces and shifting ecologies. Historical Biology 30:7688.CrossRefGoogle Scholar
Lucas, P. W. 1979. The dental-dietary adaptations of mammals. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 8:486512.Google Scholar
Lumer, H., Anderson, B. G., and Hersh, A. H.. 1942. On the significance of the constant b in the law of allometry y = bxa. American Naturalist 76:364375.CrossRefGoogle Scholar
Martínez-Pérez, C., Rayfield, E. J., Purnell, M. A., and Donoghue, P. C. J.. 2014a. Finite element, occlusal, microwear and microstructural analyses indicate that conodont microstructure is adapted to dental function. Palaeontology 57:10591066.CrossRefGoogle Scholar
Martínez-Pérez, C., Plasencia, P., Jones, D., Kolar-Jurkovšek, T., Sha, J., Botella, H., and Donoghue, P. C. J.. 2014b. There is no general model for occlusal kinematics in conodonts. Lethaia 47:547555.CrossRefGoogle Scholar
Martínez-Pérez, C., Rayfield, E. J., Botella, H., and Donoghue, P. C. J.. 2016. Translating taxonomy into the evolution of conodont feeding ecology. Geology 44:247250.CrossRefGoogle Scholar
Mazza, M., and Martínez-Pérez, C.. 2015. Unravelling conodont (Conodonta) ontogenetic processes in the Late Triassic through growth series reconstructions and X-ray microtomography. Bollettino della Società Paleontologica Italiana 54:161186.Google Scholar
Mazza, M., Furin, S., Spötl, C., and Rigo, M.. 2010. Generic turnovers of Carnian/Norian conodonts: climatic control or competition? Palaeogeography, Palaeoclimatology, Palaeoecology 290:120137.CrossRefGoogle Scholar
Mazza, M., Cau, A., and Rigo, M.. 2012a. Application of numerical cladistic analyses to the Carnian–Norian conodonts: a new approach for phylogenetic interpretations. Journal of Systematic Palaeontology 10:401422.CrossRefGoogle Scholar
Mazza, M., Rigo, M., and Gullo, M.. 2012b. Taxonomy and biostratigraphic record of the Upper Triassic conodonts of the Pizzo Mondello section (western Sicily, Italy), GSSP candidate for the base of the Norian. Rivista Italiana di Paleontologia e Stratigrafia 118:85130.Google Scholar
Mazza, M., Nicora, A., and Rigo, M.. 2018. Metapolygnathus parvus Kozur, 1972 (Conodonta): a potential primary marker for the Norian GSSP (Upper Triassic). Bollettino della Società Paleontologica Italiana 57:81101.Google Scholar
Miyashita, T., Coates, Michael I., Farrar, Robert, Larson, Peter, Manning, Phillip L., Wogelius, Roy A., Edwards, Nicholas P., Anné, Jennifer, Bergmann, Uwe, Richard Palmer, A., and Currie, Philip J.. 2019. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny. Proceedings of the National Academy of Sciences USA 116:21462151.CrossRefGoogle Scholar
Müller, K. J., and Nogami, Y.. 1971. Über den Feinbau der Conodonten. Memoirs of the Faculty of Science, Kyoto University: Series of Geology and Mineralogy 38:187.Google Scholar
Mullin, S. K., and Taylor, P. J.. 2002. The effects of parallax on geometric morphometric data. Computers in Biology and Medicine 32:455464.CrossRefGoogle ScholarPubMed
Nicoll, R. S. 1985. Multielement composition of the conodont species Polygnathus xylus xylus Stauffer, 1940 and Ozarkodina brevis (Bischoff and Ziegler, 1957) from the Upper Devonian of the Canning Basin, Western Australia. Bureau of Mineral Resources Journal of Australian Geology and Geophysics 9:133147.Google Scholar
Nicoll, R. S. 1987. Form and function of the Pa element in the conodont animal. Pp. 7790 in Aldridge, R. J., ed. Palaeobiology of conodonts. Ellis Horwood, Chichester, U.K.Google Scholar
Nicora, A., Balini, M., Bellanca, A., Bertinelli, A., Bowring, S. A., Di Stefano, P., Dumitrica, P., Guaiumi, C., Gullo, M., Hungerbuehler, A., Levera, M., Mazza, M., McRoberts, C. A., Muttoni, G., Preto, N., and Rigo, M.. 2007. The Carnian/Norian boundary interval at Pizzo Mondello (Sicani Mountains, Sicily) and its bearing for the definition of the GSSP of the Norian Stage. Albertiana 36:102129.Google Scholar
Noyan, Ö. F., and Kozur, H. W.. 2007. Revision of the late Carnian–early Norian conodonts from the Stefanion section (Argolis, Greece) and their palaeobiogeographic implications. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 245:159178.CrossRefGoogle Scholar
Ogg, J. G., Chen, Z.-Q., Orchard, M. J., and Jiang, H. S.. 2020. The Triassic period. Pp. 903953 in Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., eds. Geologic time scale 2020. Elsevier, Amsterdam.CrossRefGoogle Scholar
Onofri, A. 2020. Aomisc: Statistical methods for the agricultural sciences. https://www.statforbiology.com.Google Scholar
Pampush, J. D., Winchester, J. M., Morse, P. E., Vining, A. Q., Boyer, D. M., and Kay, R. F.. 2016. Introducing molaR: a new R package for quantitative topographic analysis of teeth (and other topographic surfaces). Journal of Mammalian Evolution 23:397412.CrossRefGoogle Scholar
Pampush, J. D., Crowell, J., Karme, A., Macrae, S. A., Kay, R. F., and Ungar, P. S.. 2019. Technical note: comparing dental topography software using platyrrhine molars. American Journal of Physical Anthropology 169:179185.CrossRefGoogle ScholarPubMed
Pampush, J. D., Morse, P. E., Fuselier, E. J., Skinner, M. M., and Kay, R. F.. 2022. Sign-oriented Dirichlet normal energy: aligning dental topography and dental function in the R-package molaR. Journal of Mammalian Evolution 29:713732.CrossRefGoogle Scholar
Pellegrom, C. 2019. Dental topographic analysis of maxillary and mandibular phyllostomid bat dentitions: implications for dietary prediction in the fossil record. Master's thesis. Grand Valley State University, Allendale, Mich.Google Scholar
Pérez-Ramos, A., Romero, A., Rodriguez, E., and Figueirido, B.. 2020. Three-dimensional dental topography and feeding ecology in the extinct cave bear. Biology Letters 16:20200792.CrossRefGoogle ScholarPubMed
Petryshen, W., Henderson, C. M., De Baets, K., and Jarochowska, E.. 2020. Evidence of parallel evolution in the dental elements of Sweetognathus conodonts. Proceedings of the Royal Society of London B 287:20201922.Google ScholarPubMed
Prufrock, K. A., López-Torres, S., Silcox, M. T., and Boyer, D. M.. 2016. Surfaces and spaces: troubleshooting the study of dietary niche space overlap between North American stem primates and rodents. Surface Topography: Metrology and Properties 4:024005.Google Scholar
Purnell, M. A. 1993. Feeding mechanisms in conodonts and the function of the earliest vertebrate hard tissues. Geology 21:375377.2.3.CO;2>CrossRefGoogle Scholar
Purnell, M. A. 1994. Skeletal ontogeny and feeding mechanisms in conodonts. Lethaia 27:129138.CrossRefGoogle Scholar
Purnell, M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates. Nature 374:798800.CrossRefGoogle Scholar
Purnell, M. A., and von Bitter, P. H.. 1992. Blade-shaped conodont elements functioned as cutting teeth. Nature 359:629631.CrossRefGoogle Scholar
Purnell, M. A., and Evans, A.. 2009. Conodont tooth complexity: quantification, convergence with mammals, and implications for dietary analysis. 53:3940.Google Scholar
Purnell, M. A., Donoghue, P. C. J., and Aldridge, R. J.. 2000. Orientation and anatomical notation in conodonts. Journal of Paleontology 74:113122.2.0.CO;2>CrossRefGoogle Scholar
Rannikko, J., Adhikari, H., Karme, A., Žliobaitė, I., and Fortelius, M.. 2020. The case of the grass-eating suids in the Plio-Pleistocene Turkana Basin: 3D dental topography in relation to diet in extant and fossil pigs. Journal of Morphology 281:348364.CrossRefGoogle ScholarPubMed
R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Renaud, S., and Ledevin, R.. 2017. Impact of wear and diet on molar row geometry and topography in the house mouse. Archives of Oral Biology 81:3140.CrossRefGoogle ScholarPubMed
Robson, S. V. 2018. An analysis of North American taeniolabidoid multituberculate (Mammalia, Allotheria) dentitions using mammalian dietary proxies. Master's thesis. University of Calgary, Calgary, Alberta.Google Scholar
Santana, S. E., Strait, S., and Dumont, E. R.. 2011. The better to eat you with: functional correlates of tooth structure in bats. Functional Ecology 25:839847.CrossRefGoogle Scholar
Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, B. J., and Brown, J. H.. 2004. The predominance of quarter-power scaling in biology. Functional Ecology 18:257282.CrossRefGoogle Scholar
Savriama, Y., Romestaing, C., Clair, A., Averty, L., Ulmann, J., Ledevin, R., and Renaud, S.. 2022. Wild versus lab house mice: effects of age, diet, and genetics on molar geometry and topography. Journal of Anatomy 240:6683.CrossRefGoogle ScholarPubMed
Schmidt, H. 1934. Conodonten-Funde in ursprünglichem Zusammenhang. Palaeontologische Zeitschrift 16:7685.CrossRefGoogle Scholar
Scott, H. W. 1934. The zoological relationships of the conodonts. Journal of Paleontology 8:448455.Google Scholar
Selig, K. R., López-Torres, S., Sargis, E. J., and Silcox, M. T.. 2019. First 3D dental topographic analysis of the enamel-dentine junction in non-primate euarchontans: contribution of the enamel-dentine junction to molar morphology. Journal of Mammalian Evolution 26:587598.CrossRefGoogle Scholar
Shirley, B., Grohganz, M., Bestmann, M., and Jarochowska, E.. 2018. Wear, tear and systematic repair: testing models of growth dynamics in conodonts with high-resolution imaging. Proceedings of the Royal Society of London B 285:20181614.Google ScholarPubMed
Sieg, A. E., O'Connor, M. P., McNair, J. N., Grant, B. W., Agosta, S. J., and Dunham, A. E.. 2009. Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? American Naturalist 174:720733.CrossRefGoogle ScholarPubMed
Spradley, J. P., Pampush, J. D., Morse, P. E., and Kay, R. F.. 2017. Smooth operator: The effects of different 3D mesh retriangulation protocols on the computation of Dirichlet normal energy. American Journal of Physical Anthropology 163:94109.CrossRefGoogle ScholarPubMed
Stockey, C., Donoghue, P. C. J., Harvey, T. H. P., Murdock, D. J. E., and Purnell, M. A.. 2021. Multivariate dental topographic metrics demonstrate the dietary breadth and specialisms of conodonts. 65th Palaeontological Association Annual Meeting, Abstracts, pp. 4647.Google Scholar
Stockey, C., Donoghue, P. C. J., Harvey, T. H. P., Murdock, D. J. E., and Purnell, M. A.. 2022. Multivariate dental topographic metrics demonstrate the dietary breadth and specialisms of conodonts. Fifth International Conodont Symposium (ICOS5), Wuhan, China, 2427 June 2022.Google Scholar
Strait, S. G. 1997. Tooth use and the physical properties of food. Evolutionary Anthropology: Issues, News, and Reviews 5:199211.3.0.CO;2-8>CrossRefGoogle Scholar
Terrill, D. F., Jarochowska, E., Henderson, C. M., Shirley, B., and Bremer, O.. 2022. Sr/Ca and Ba/Ca ratios support trophic partitioning within a Silurian conodont community from Gotland, Sweden. Paleobiology 48:601621.CrossRefGoogle Scholar
Vermeer, H. 2019. The association between dietary niche variation in rodents and climate change across the Paleocene–Eocene Thermal Maximum. Master's thesis. Grand Valley State University, Allendale, Mich.Google Scholar
Villalobos-Chaves, D., and Santana, S. E.. 2022. Craniodental traits predict feeding performance and dietary hardness in a community of Neotropical free-tailed bats (Chiroptera: Molossidae). Functional Ecology 36:16901699.CrossRefGoogle Scholar
Vitek, N. S., Morse, P. E., Boyer, D. M., Strait, S. G., and Bloch, J. I.. 2021. Evaluating the responses of three closely related small mammal lineages to climate change across the Paleocene–Eocene thermal maximum. Paleobiology 47:464486.CrossRefGoogle Scholar
Vries, D. de, Heritage, S., Borths, M. R., Sallam, H. M., and Seiffert, E. R.. 2021. Widespread loss of mammalian lineage and dietary diversity in the early Oligocene of Afro-Arabia. Communications Biology 4:1172.CrossRefGoogle ScholarPubMed
Warton, D. I., Duursma, R. A., Falster, D. S., and Taskinen, S.. 2012. smatr 3—an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution 3:257259.CrossRefGoogle Scholar
West, G. B., Brown, J. H., and Enquist, B. J.. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:122126.CrossRefGoogle ScholarPubMed
White, C. R., and Seymour, R. S.. 2003. Mammalian basal metabolic rate is proportional to body mass2/3. Proceedings of the National Academy of Sciences USA 100:40464049.CrossRefGoogle ScholarPubMed
Winchester, J. M., Boyer, D. M., St. Clair, E. M., Gosselin-Ildari, A. D., Cooke, S. B., and Ledogar, J. A.. 2014. Dental topography of platyrrhines and prosimians: convergence and contrasts. American Journal of Physical Anthropology 153:2944.CrossRefGoogle ScholarPubMed
Zhang, S., Aldridge, R. J., and Donoghue, P. C. J.. 1997. An Early Triassic conodont with periodic growth? Journal of Micropalaeontology 16:6572.Google Scholar
Zhang, Z. T., Sun, Y. D., Wignall, P. B., Fu, J. L., Li, H. X., Wang, M. Y., and Lai, X. L.. 2018. Conodont size reduction and diversity losses during the Carnian Humid Episode in SW China. Journal of the Geological Society 175:10271031.CrossRefGoogle Scholar