Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:22:38.427Z Has data issue: false hasContentIssue false

Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway

Published online by Cambridge University Press:  08 April 2016

Corinne E. Myers
Affiliation:
Department of Geology, and Biodiversity Institute, University of Kansas, 120 Lindley Hall, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045-7613, U.S.A. E-mail: [email protected]
Richard A. MacKenzie III
Affiliation:
Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, Florida 32611, U.S.A.
Bruce S. Lieberman
Affiliation:
Department of Ecology and Evolutionary Biology, and Biodiversity Institute, University of Kansas, 120 Lindley Hall, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045-7613, U.S.A.

Abstract

Significant warming of Earth's climate in the near term seems increasingly likely. If significant enough, this climatic regime could, in the long term, come to resemble previous greenhouse intervals in earth history. Consequently, analysis of the fossil record during periods of extreme warmth may provide important lessons for species biology, including biogeography, in a much warmer world. To explore this issue, we analyzed the biogeographic response of 63 molluscan species to the long-term global warmth in the Late Cretaceous Western Interior Seaway (WIS) of North America, using Geographic Information Systems (GIS) to quantitatively measure changes in range size and distribution throughout this interval. We specifically considered the role that geographic range size played in mediating extinction resistance and invasion potential of these WIS species. We found no relationship between geographic range size and survivorship. However, endemic species with small range sizes were more likely to become invasive. Finally, mollusks did not experience a poleward shift in range out of the tropics during this warm regime. To the extent that these patterns are representative, and the WIS and taxa considered constitute a reasonable ancient analogue to a warmer future world, these results suggest that some biogeographic “rules” may not prevail under greenhouse conditions of long-term, equable warmth. They also suggest that other factors beyond geographic range size, including distinctive niche characteristics, may play quite important roles in species survival and invasion potential. This potentially complicates predictions regarding the future responses of extant species to long-term warming.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barron, E. J. 1983. A warm, equable Cretaceous: the nature of the problem. Earth Science Reviews 19:305338.Google Scholar
Barron, E. J. 1995. Warmer worlds: global change lessons from earth history. World Survey of Climatology 16:7194.Google Scholar
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.Google Scholar
Bottjer, D. J. 2002. Smoky Hill Chalk: spectacular Cretaceous marine fauna. Pp. 353364inBottjer, D. J., Etter, W., and Hagadorn, J. W., Tang, C. M., eds. Exceptional fossil preservation: a unique view on the evolution of marine life. Columbia University Press, New York.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Brown, J. H., Stevens, G. C., Kaufman, D. M. 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics 27:597623.Google Scholar
Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J.Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., and Richardson, A. J. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652655.Google Scholar
Cobban, W. A., Walaszczyk, I., Obradovich, J. D., and McKinney, K. C. 2006. A USGS Zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. USGS Open-file Report 2006–1250.Google Scholar
Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C., and Longino, J. T. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258261.Google Scholar
Costa, G. C., Wolfe, C., Shepard, D. B., Caldwell, J. P., and Vitt, L. J. 2008. Detecting the influence of climatic variables on species distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. Journal of Biogeography 35:637646.Google Scholar
Covey, C., Sloan, L. C., and Hoffert, M. I. 1996. Paleoclimate data constraints on climate sensitivity: the paleocalibration method. Climatic Change 32:165184.Google Scholar
Crampton, J. S., Cooper, R. A., Beu, A. G., Foote, M., and Marshall, B. A. 2010. Biotic influences on species duration: interactions between traits in marine molluscs. Paleobiology 36:204223.Google Scholar
Crawley, M. J. 1987. What makes a community invasible? Colonization, Succession, and Stability 26:429453.Google Scholar
Daehler, C. C., and Strong, D. R. Jr. 1993. Prediction and biological invasion. Trends in Ecology and Evolution 8:380.Google Scholar
Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H., and Ceballos, G. 2009. Multiple ecology pathways to extinction in mammals. Proceedings of the National Academy of Sciences USA 106:1070210705.Google Scholar
Dietl, G. P., and Flessa, K. W. 2011. Conservation paleobiology: putting the dead to work. Trends in Ecology and Evolution 26:3037.Google Scholar
Dunhill, A. M. 2012. Problems with using rock outcrop area as a paleontological sampling proxy: rock outcrop and exposure area compared with coastal proximity, topography, land use, and lithology. Paleobiology 38:126143.Google Scholar
Ehrlich, P. R. 1989. Attributes of invaders and the invading process: vertebrates. InDrak, J. A., Mooney, H. A., di Castri, F., Groves, R. H., Kruger, F. J, Rejmánek, M, and Williamson, M., eds. Biological invasions: a global perspective. Scope 37:315328.Google Scholar
ESRI (Environmental Systems Research Institute). 2006. ARCGIS, Version 9.2. ESRI, Redlands, Calif.Google Scholar
Fatherree, J. W., Harries, P. J., and Quinn, T. M. 1998. Oxygen and carbon isotopic “dissection” of Baculites compressus (Mollusca: Cephalopoda) from the Pierre Shale (upper Campanian) of South Dakota: implications for Paleoenvironmental reconstructions. Palaios 13:376385.Google Scholar
Fisher, C. G., and Arthur, M. A. 2002. Water mass characteristics in the Cenomanian Western Interior Seaway as indicated by stable isotopes of calcareous organisms. Palaeogeography, Palaeoclimatology, Palaeoecology 188:189213.Google Scholar
Flessa, K. W., and Jablonski, D. 1993. Extinction is here to stay. Paleobiology 9:315321.Google Scholar
Flessa, K. W., 1996. The geography of evolutionary turnover: a global analysis of extant bivalves. Pp. 376397inJablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, R. A. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology. 34:421433.Google Scholar
Franks, P. J., and Beerling, D. J. 2009. CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology 7:227236.Google Scholar
Gaston, K. J. 1998. Species-range size distributions: products of speciation, extinction, and transformation. Philosophical Transactions of the Royal Society of London B 353:219230.Google Scholar
Gaston, K. J. 2003. The structure and dynamics of geographic ranges (Oxford Series in Ecology and Evolution). Oxford University Press, Oxford.Google Scholar
Glancy, T. J. Jr., Arthur, M. A., Barron, E. J., and Kauffman, E. G. 1993. A paleoclimate model for the North American Cretaceous (Cenomanian–Turonian) epicontinental sea. InCaldwell, W. G. E. and Kauffman, E. G., eds. Evolution of the Western Interior Basin. Geological Association of Canada Special Paper 39:219242.Google Scholar
Gould, S. J. 1987. Time's arrow time's cycle: myth and metaphor in the discovery of geological time. Harvard University Press, Cambridge.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:19.Google Scholar
Hancock, J. M., and Kauffman, E. G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society, London 136:175186.Google Scholar
Hansen, T A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193207.Google Scholar
Harley, C. D. G. 2011. Climate change, keystone predation, and biodiversity loss. Science 334:11241127.Google Scholar
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.Google Scholar
Harries, P. J. 2003. A reappraisal of the relationship between sea level and species richness. InHarries, P. J., ed. High-resolution approaches in stratigraphic paleontology. Topics in Geobiology 21:227261.Google Scholar
Hattin, D. E. 1982. Stratigraphy and depositional environment of the Smoky Hill Chalk Member, Niobrara Chalk (upper Cretaceous) of the type area, western Kansas. Kansas Geological Survey Bulletin 225:1108.Google Scholar
Hay, W. W. 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research 29:725753.Google Scholar
Hay, W. W., and DeConto, R. M. 1999. Comparison of modern and Late Cretaceous meridional energy transport and oceanology. InBarrera, E. and Johnson, C. C., eds. Evolution of the Cretaceous ocean-climate system. Geological Society of America Special Paper 332:283300.Google Scholar
Hayes, K. R., and Barry, S. C. 2008. Are there any consistent predictors of invasion success? Biological Invasions 10:483506.Google Scholar
Haywood, A. M., Ridgewell, A., Lunt, D. J, Hill, D. J., Pound, M. J., Dowsett, H J., Dolan, A. M., Francis, J. E., and Williams, M. 2011. Are there pre-Quaternary geological analogues for a future greenhouse warming? Philosophical Transactions of the Royal Society of London A 369:933956.Google Scholar
Heim, N. A., and Peters, S. E. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:112.Google Scholar
Hendricks, J. R., Lieberman, B. S., and Stigall, A. L. 2008. Using GIS to study palaeobiogeographic and macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology 264:163175.Google Scholar
Hickling, R., Roy, D. B., Hill, J. K., Fox, R., and Thomas, C. D. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12:450455.Google Scholar
Huber, B. T., Hodell, D. A., and Hamilton, C. P. 1995. Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107:11641191.Google Scholar
Huber, B. T., Norris, R. D., and MacLeod, K. G. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123126.Google Scholar
Hunt, G., Roy, K., and Jablonski, D. 2005. Species-level heritability reaffirmed: a comment on “On the heritability of geographic range sizes.” American Naturalist 166:129135.Google Scholar
Jablonski, D. 1984. Keeping time with mass extinctions. Paleobiology 10:139145.Google Scholar
Jablonski, D. 1986. Larval ecology and macroevolution in marine invertebrates. Bulletin of Marine Science 39:565587.Google Scholar
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.Google Scholar
Jablonski, D. 1988. Estimates of species durations: response. Science 240:969.Google Scholar
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289inJablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105 (Suppl. 1):1152811535.Google Scholar
Jablonski, D., and Hunt, G. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. American Naturalist 168:556564.Google Scholar
Jablonski, D., and Roy, K. 2003. Geographical range and speciation in fossil and living molluscs. Proceedings of the Royal Society of London B 270:401406.Google Scholar
Jablonski, D., and Valentine, J. W. 1990. From regional to total geographic ranges: testing the relationship in Recent bivalves. Paleobiology 16:126142.Google Scholar
Jenkyns, H. C., Forster, A., Schouten, S., and Sinnginghe Damste, J. S. 2004. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432:888892.Google Scholar
Johnson, K. G., Budd, A. F., and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21:5273.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219222.Google Scholar
Kammer, T. W., 1998. Evolutionary significance of differential species longevity in Osagean–Meramician (Mississippian) crinoid clades. Paleobiology 24:155176.Google Scholar
Kauffman, E. G. 1984. Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. InWestermann, G. E. G., ed. Jurassic–Cretaceous biochronology and paleogeography of North America. Geological Association of Canada Special Paper 27:273306.Google Scholar
Kauffman, E. G., and Caldwell, W. G. E. 1993. The Western Interior Basin in Space and Time. InCaldwell, W. G. E. and Kauffman, E. G., eds. Evolution of the Western Interior Basin, Geological Association of Canada Special Paper 39:130.Google Scholar
Keller, G., Berner, Z., Adatte, T., and Stüben, D. 2004. Cenomanian–Turonian and δ13C, and δ18O sea level and salinity variations at Pueblo, Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology 211:1943.Google Scholar
Kennedy, W. J., and Cobban, W. A. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology 17:194.Google Scholar
Kennedy, W. J., Landman, N. H., Christensen, W. K., Cobban, W. A., and Hancock, J. M. 1998. Marine connections in North America during the late Maastrichtian: palaeogeographic and palaeobiogeographic significance of Jeletzkytes nebrascensis Zone cephalopod fauna from the Elk Butte Member of the Pierre Shale, SE South Dakota and NE Nebraska. Cretaceous Research 19:745775.Google Scholar
Kidwell, S. M. 2005. Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science 307:914917.Google Scholar
Kiessling, W., and Baron-Szabo, R. C. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214:195223.Google Scholar
Kiessling, W., and Aberhan, M. 2007. Geographical distribution and extinction risk: lessons from Triassic–Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.Google Scholar
Kozak, K. H., Graham, C. H., and Wiens, J. J. 2008. Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology and Evolution 23:141148.Google Scholar
Landman, N. H., Larson, N. L., and Cobban, W. A. 2007. Jaws and radula of Baculites from the upper Cretaceous (Campanian of North America). Pp. 257298inLandman, N. H., Davis, R. A., and Mapes, R. H., eds. Cephalopods present and past: new insights and fresh perspectives. Springer, New York.Google Scholar
Landman, N. H., Cobban, W. A., and Larson, N. L. 2012. Mode of life and habitat of scaphitid ammonites. Geobios 45:8798.Google Scholar
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range, and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.Google Scholar
Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., Stenseth, N. C. 2008. Proceedings of the National Academy of Sciences USA 105:60976102.Google Scholar
Lockwood, J. L., Cassey, P., and Blackburn, T. 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology and Evolution 20:223228.Google Scholar
Lockwood, R. 2008. Beyond the big five: extinctions as experiments in the history of life. InKelley, P. H. and Bambach, R. K., eds. From evolution to geobiology: research questions driving paleontology at the start of a new century. Paleontological Society Papers 14:207228.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.Google Scholar
Meyer, D. L., and Milsom, C. V. 2001. Microbial sealing in the biostratinomy of Uintacrinus Lagerstätten in the Upper Cretaceous of Kansas and Colorado, USA. Palaios 16:535546Google Scholar
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J. 2010. The next generation of scenarios for climate change research and assessment. Nature 463:747756.Google Scholar
Moulton, M. P., and Pimm, S. L. 1986. Species introductions to Hawaii. Pp. 231249inMooney, H. A. and Drake, J. A., eds. Ecology of biological invasions of North America and Hawaii (Ecological Studies Series No. 58). Springer, New York.Google Scholar
Myers, C. E., and Lieberman, B. S. 2011. Sharks that pass in the night: using Geographical Information Systems to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society of London B 278:681689.Google Scholar
Myers, C. E., and Saupe, E. E.In press. A macroevolutionary expansion of the Modern Synthesis. Palaeontology.Google Scholar
Norris, R. D. 1992. Extinction selectivity and ecology in planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 95:117.CrossRefGoogle Scholar
Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:636669.Google Scholar
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.Google Scholar
Payne, J. L., Truebe, S., Nützel, A., and Chang, E. T. 2011. Local and global abundance associated with extinction risk in late Paleozoic and early Mesozoic gastropods. Paleobiology 37:616632.Google Scholar
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., and Araújo, M. B. 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton, N.J.Google Scholar
Poulsen, C. J., Barron, E. J., Arthur, M. A., and Peterson, W. H. 2001. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16:576592.CrossRefGoogle Scholar
Powell, M. G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.Google Scholar
Purvis, A., Gittleman, J. L., Cowlishaw, G., and Mace, G. M. 2000. Predicting extinction risk in declining species. Proceedings of the Royal Society of London B 267:19471952.Google Scholar
Rode, A. L., and Lieberman, B. S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeogeography 211:345359.Google Scholar
Ross, M. I., and Scotese, C. R. 2000. PaleoGIS/ArcView 3.5. PALEOMAP Project, Arlington, Tex.Google Scholar
Rothwell Group. 2007. PaleoGIS for ArcGIS 9.x. Houston.Google Scholar
Roy, K. 2001. Analyzing temporal trends in regional diversity: a biogeographic perspective. Paleobiology 27:631645.Google Scholar
Roy, J., Navas, M. L., and Sonié, L. 1991. Invasion by annual brome grasses: a case study challenging the homoclime approach to invasions. Pp. 207224inGroves, R. H. and Di Castri, F., eds. Biogeography of Mediterranean invasions. Cambridge University Press, Cambridge.Google Scholar
Roy, J., 2002. Body size and invasion success in marine bivalves. Ecology Letters 5:163167.Google Scholar
Ruiz, G. M., Fofonoff, P. W., Carlton, J. T., Wonham, M. J., and Hines, A. H. 2000. Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annual Review of Ecology and Systematics 31:481531.Google Scholar
Sageman, B. B., Rich, J., Arthur, M. A., Birchfield, G. E., and Dean, W. E. 1997. Evidence for Milankovich periodicities in Cenomanian–Turonian lithologic and geochemical cycles, Western Interior USA. Journal of Sedimentary Research 67:286302.Google Scholar
Sala, O. E., Chapin, F. S. III, Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M., Wall, D. H. 2000. Global biodiversity scenarios for the year 2100. Science 287:17701774.Google Scholar
Schroder-Adams, C. J., Leckie, D. A., Bloch, J., Craig, J., McIntyre, D. J., and Adams, P. J. 1996. Paleoenvironmental changes in the Cretaceous (Albian to Turonian) Colorado Group of western Canada: microfossil, sedimentological, and geochemical evidence. Cretaceous Research 17:311365.Google Scholar
Soberón, J., and Nakamura, M. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA 106:1964419650.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry, 3d ed. W. H. Freeman, New York.Google Scholar
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. L. 2007. The physical science basis. Working Group I Contribution to IPCC Fourth Assessment Report: Climate Change 2007. Cambridge University Press, Cambridge.Google Scholar
Spicer, R. A., and Corfield, R. M. 1992. A review of terrestrial and marine climates in the Cretaceous with implications for modeling the ‘Greenhouse Earth.' Geological Magazine 129:169180.Google Scholar
Stachowicz, J. J., Terwin, J. R, Whitlatch, R. B., and Osman, R. W. 2002. Linking climate change and biological invasion: ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences USA 99:1549715500.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene bivalves. Paleobiology 12:89110.CrossRefGoogle Scholar
Stanley, S. M., Wetmore, K. L., and Kennett, J. P. 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.Google Scholar
Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133:240256.Google Scholar
Stevens, G. C. 1996. Extending Rapoport's rule to Pacific marine fishes. Journal of Biogeography 23:149154.Google Scholar
Stigall, A. L. 2010. Using GIS to assess the biogeographic impact of species invasions on native brachiopods during the Richmondian Invasion in the type-Cincinnatian (Late Ordovician, Cincinnati region). Palaeontologia Electronica 13:119.Google Scholar
Stigall, A. L., and Lieberman, B. S. 2006. Quantitative palaeobiogeography: GIS, phylogenetic biogeographical analysis, and conservation insights. Journal of Biogeography 33:20512060.Google Scholar
Swenson, N. G. 2008. The past and future influence of geographic information systems on hybrid zone, phylogeographic, and speciation research. Journal of Evolutionary Biology 21:421434.Google Scholar
Thomas, C. D., and Ohlemüller, R. 2010. Climate change and species' distributions: an alien future? Pp. 1929inPerrings, C., Mooney, H., and Williamson, M., eds. Bioinvasions and globalization: ecology, economics, management, and policy. Oxford University Press, Oxford.Google Scholar
Travis, J. M. J. 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London B 270:467473.CrossRefGoogle ScholarPubMed
Tsujita, C. J., and Westermann, G. E. G. 1998. Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 144:135160.Google Scholar
Ufnar, D. F., Ludvigson, G. A., Gonzalez, L., and Grocke, D. R. 2008. Precipitation rates and atmospheric heat transport during the Cenomanian greenhouse warming in North America: estimates from a stable isotope mass-balance model. Palaeogeography, Palaeoclimatology, Palaeoecology 266:2838.Google Scholar
Vermeij, G. J. 1991a. When biotas meet: understanding biotic interchange. Science 253:10991104.Google Scholar
Vermeij, G. J. 1991b. Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17:281307.Google Scholar
Vermeij, G. J. 1993. Biogeography of recently extinct marine species: implications for conservation. Conservation Biology 7:391397.Google Scholar
Waldron, A. 2010. Lineages that cheat death: surviving the squeeze on range size. Evolution 64:22782292.Google Scholar
Williamson, M. 1996. Biological invasions (Population and Community Biology Series 15). Chapman and Hall, London.Google Scholar
Williamson, M., and Fitter, A. 1996. The characters of successful invaders. Biological Conservation 78:163170.Google Scholar
Willis, K. J., and MacDonald, G. M. 2011. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annual Review of Ecology, Evolution, and Systematics 42:267287.Google Scholar
Willis, K. J., Bennett, K. D., Bhagwat, S. A., and Birks, H. J. B. 2010. 4°C and beyond: what did this mean for biodiversity in the past? Systematics and Biodiversity 8:39.Google Scholar
Yacobucci, M. M. 2004. Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretaceous Research 25:927944.Google Scholar
Yacobucci, M. M. 2008. Controls on shell shape in acanthoceratid ammonites from the Cenomanian–Turonian Western Interior Seaway of North America. InHarries, P. J., ed. High-resolution approaches in stratigraphic paleontology. Topics in Geobiology 21:195226.Google Scholar