Hostname: page-component-cc8bf7c57-pd9xq Total loading time: 0 Render date: 2024-12-11T23:01:40.223Z Has data issue: false hasContentIssue false

Form and function: structural analysis in evolutionary morphology

Published online by Cambridge University Press:  08 February 2016

George V. Lauder*
Affiliation:
Department of Anatomy, University of Chicago, 1025 East 57th Street, Chicago, Illinois 60637

Abstract

A theoretical approach to the analysis of historical factors (Raup 1972) in evolutionary morphology is presented which addresses transformational hypotheses about structural systems. This (structural) approach to testing historical hypotheses about phylogenetic constraints on form and function and structural and functional versatility involves (1) the reconstruction of nested sets of structural features in monophyletic taxa, (2) the use of general or emergent organizational properties of structural and functional systems (as opposed to uniquely derived morphological features), and (3) the comparative examination of the consequences for structural and functional diversity of these general features in related monophyletic taxa.

Three examples of emergent organizational properties are considered: structural complexity, repetition of parts, and the decoupling of primitively constrained systems. Two classes of hypotheses about the evolution of design are proposed. Transformational hypotheses concern historical pathways of change in form as a consequence of general organizational features which are primitive for a lineage. Relational hypotheses involve correlations between structure-function networks primitive for a clade and morphological diversity both between and within terminal taxa. To the extent that transformational and relational hypotheses about form are corroborated, they provide evidence of underlying regularity in the transformation of organic design that may be a consequence of the hierarchical organization of structural and functional patterns in organisms.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, M. B. 1980. Severtsov and Schmalhausen: Russian morphology and the evolutionary synthesis. Pp. 193225. In: Mayr, E. and Provine, W. B., eds. The Evolutionary Synthesis. Harvard Univ. Press; Cambridge.CrossRefGoogle Scholar
Alberch, P. 1980. Ontogenesis and morphological diversification. Am. Zool. 20:653667.CrossRefGoogle Scholar
Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology. 5:296317.CrossRefGoogle Scholar
Allen, G. 1975. Life Science in the Twentieth Century. John Wiley; N.Y.Google Scholar
Berlin, I. 1979. The concept of scientific history. Pp. 103142. In: Hardy, H., ed. Concepts and Categories. Viking Press; N.Y.Google Scholar
Bock, W. J. 1960. The palatine process of the premaxilla in the Passeres. Bull. Mus. Comp. Zool. 122:361488.Google Scholar
Bock, W. J. 1970. Microevolutionary sequences as a fundamental concept in macroevolutionary models. Evolution. 24:704722. Bock, W. J. 1979. The synthetic explanation of macroevolutionary change—a reductionistic approach. Bull. Carn. Mus. N.H. 13: 20–69.CrossRefGoogle ScholarPubMed
Bock, W. J. 1980. The definition and recognition of biological adaptation. Am. Zool. 20:217227.CrossRefGoogle Scholar
Bock, W. J. and von Wahlert, G. 1965. Adaptation and the form-function complex. Evolution. 19:269299.CrossRefGoogle Scholar
Bowman, R. I. 1961. Morphological Differentiation and Adaptation in the Galapagos Finches. Univ. Calif. Press; Berkeley.Google Scholar
Bronn, H. G. 1858. Morphologische Studien uber die Gestaltungs-Gesetze der Naturkorper uberhaupt und der organischen inbesondere. Leipzig.Google Scholar
Clark, R. B. 1980. Natur und Entstehungen der metameren Segmentierung. Zool. Jb. Anat. 103:169195.Google Scholar
Coleman, W. 1967. The Interpretation of Animal Form. The Sources of Science, #15. Johnson Reprint Corp.; N.Y.Google Scholar
Coleman, W. 1976. Morphology between type concept and descent theory. J. Hist. Med. 31:149175.Google ScholarPubMed
Coleman, W. 1977. Biology in the Nineteenth Century: Problems of Form, Function, and Transformation. Cambridge Univ. Press; Cambridge, England.Google Scholar
Coleman, W. 1980. Morphology in the evolutionary synthesis. Pp. 174180. In: Mayr, E. and Provine, W. B., eds. The Evolutionary Synthesis. Harvard Univ. Press; Cambridge.CrossRefGoogle Scholar
Cracraft, J. 1974. Phylogenetic models and classification. Syst. Zool. 23:7190.CrossRefGoogle Scholar
Cracraft, J. 1981. The use of functional and adaptive criteria in phylogenetic systematics. Am. Zool. 21:2136.CrossRefGoogle Scholar
Darwin, C. D. 1859. On the Origin of Species. John Murray; London.Google Scholar
Davis, D. D. 1958. The proper goal of comparative anatomy. Proc. Centenary Congress Biol., Singapore.Google Scholar
Dullemeijer, P. 1958. The mutual structural influences of the elements in a pattern. Arch. Neerl. Zool. 13:174188.Google Scholar
Dullemeijer, P. 1968. Some methodology problems in a holistic approach to functional morphology. Acta Biotheoret. 18:203214.CrossRefGoogle Scholar
Dullemeijer, P. 1974. Concepts and Approaches in Animal Morphology. Van Gorcum; The Netherlands.Google Scholar
Eldredge, N. 1979a. Alternative approaches to evolutionary theory. Bull. Carn. Mus. Nat. Hist. 13:719.Google Scholar
Eldredge, N. 1979b. Cladism and common sense. Pp. 165198, In: Cracraft, J. and Eldredge, N., eds. Phylogenetic Analysis and Paleontology. Columbia Univ. Press; N.Y.CrossRefGoogle Scholar
Eldredge, N., and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia Univ. Press; New York.Google Scholar
Farris, J. S. 1977. On the phenetic approach to vertebrate classification. Pp. 823850. In: Hecht, M. K., Goody, P. C., and Hecht, B. M., eds. Major Patterns in Vertebrate Evolution. Plenum Press; New York.CrossRefGoogle Scholar
Fisher, D. 1981. The role of functional analysis in phylogenetic inference: examples from the history of the Xiphosura. Am. Zool. 21:4762.CrossRefGoogle Scholar
Fitch, W. M. and Margoliash, E. 1967. Construction of phylogenetic trees. Science. 155:279284.CrossRefGoogle ScholarPubMed
Flessa, K. W., Powers, K. V., and Cisne, J. L. 1975. Specialization and evolutionary longevity in the Arthropoda. Paleobiology. 1:7181.CrossRefGoogle Scholar
Gaffney, E. S. 1979. An introduction to the logic of phylogeny reconstruction. Pp. 79111. In: Cracraft, J. and Eldredge, N., eds. Phylogenetic Analysis and Paleontology. Columbia Univ. Press; N.Y.CrossRefGoogle Scholar
Gans, C. 1960. Studies on amphisbaenids (Amphibia, Reptilia). I. A taxonomic revision of the Trogonophinae and a functional interpretation of the amphisbaenid adaptive pattern. Bull. Am. Mus. Nat. Hist. 119:129204.Google Scholar
Gans, C. 1966. Some limitations and approaches to problems in functional anatomy. Folia Biotheor. 6:4150.Google Scholar
Gans, C. 1969. Some questions and problems in morphological comparison. Ann. N.Y. Acad. Sci. 167:506513.CrossRefGoogle Scholar
Gans, C. 1974. Biomechanics, an Approach to Vertebrate Biology. J. B. Lippincott; Philadelphia.Google Scholar
Gasc, J. P. 1979. La métamerie ést-elle une clef fondamentale pour comprendre l'organization des vértébres? Bull. Soc. Zool. France. 104:315323.Google Scholar
Gegenbaur, C. 1876. Die Stellung und Bedeutung der Morphologie. Gegen. Morph. Jahr. 1:119. Translated in Coleman (1967) as: The condition and significance of morphology.Google Scholar
Goodrich, E. S. 1913. Metameric segmentation and homology. Q. J. Micr. Sci. 59:227248.Google Scholar
Gould, S. J. 1980a. Is a new and general theory of evolution emerging? Paleobiology. 6:119130.CrossRefGoogle Scholar
Gould, S. J. 1980b. The evolutionary biology of constraint. Daedalus. 109:3952.Google Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist program. Proc. R. Soc. Lond. 205:581598.Google Scholar
Gutmann, W. F. 1977. Phylogenetic reconstruction: theory, methodology, and application to chordate evolution. Pp. 645669. In: Hecht, M. K., Goody, P. C., and Hecht, B. M., eds. Major Patterns in Vertebrate Evolution. Plenum Press; New York.CrossRefGoogle Scholar
Gutmann, W. F. and Peters, D. S. 1973. Konstruktion und Selektion: Argumente gegen einen morphologisch verkurzten Selktionismus. Acta Biotheor. 22:151180.CrossRefGoogle Scholar
Gutmann, W. F., Vogel, K., and Zorn, H. 1978. Brachiopods: biomechanical interdependencies governing their origin and phylogeny. Science. 199:890893.CrossRefGoogle ScholarPubMed
Henning, W. 1966. Phylogenetic Systematics. Univ. Illinois Press; Urbana.Google Scholar
Hickman, C. S. 1980. Gastropod radulae and the assessment of form in evolutionary paleontology. Paleobiology. 6:276294.CrossRefGoogle Scholar
His, W. 1888. On the principles of animal morphology. Proc. R. Soc. Edin. 15:287298.Google Scholar
Jacob, F. 1977. Evolution and tinkering. Science. 196:11611166.CrossRefGoogle ScholarPubMed
Lankester, E. R. 1904. The structure and classification of the Arthropoda. Q. J. Microsc. Sci. 47:523582.Google Scholar
Lauder, G. V. 1982. Patterns of evolution in the feeding mechanism of actinopterygian fishes. Am. Zool., in press.CrossRefGoogle Scholar
Lewontin, R. C. 1969. The bases of conflict in biological explanation. J. Hist. Biol. 2:3545.CrossRefGoogle Scholar
Liem, K. F. 1973. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22:425441.CrossRefGoogle Scholar
Liem, K. F. 1980. Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes. Am. Zool. 20:295314.CrossRefGoogle Scholar
Lin, E. C. C., Hacking, A. J., and Aguilar, J. 1976. Experimental models of aquisitive evolution. BioScience. 26:548555.CrossRefGoogle Scholar
Lombard, R. E. and Wake, D. B. 1976. Tongue evolution in the lungless salamanders, Family Plethodontidae. I. Introduction, theory, and general model of dynamics. J. Morphol. 148:265286.Google ScholarPubMed
Lombard, R. E. and Wake, D. B. 1977. Tongue evolution in the lungless salamanders, Family Plethodontidae. II. Function and evolutionary diversity. J. Morphol. 153:3980.Google ScholarPubMed
Lovtrup, S. 1977. Epigenetics. A Treatise on Theoretical Biology. John Wiley; London.Google Scholar
MacIntyre, R. J. 1976. Evolution and ecological value of duplicate genes. Annu. Rev. Ecol. Syst. 7:421468.CrossRefGoogle Scholar
Markert, C. L., Shaklee, J. B., and Whitt, G. S. 1975. Evolution of a gene. Science. 189:102114.CrossRefGoogle ScholarPubMed
Mayr, E. 1960. The emergence of evolutionary novelties. Pp. 349380. In: Tax, S. ed. Evolution After Darwin, Vol. II. Univ. Chicago Press; Chicago.Google Scholar
Mayr, E. 1963. Animal Species and Evolution. Harvard Univ. Press; Cambridge.CrossRefGoogle Scholar
McGhee, G. 1980. Shell form in the biconvex articulate brachiopoda: a geometric analysis. Paleobiology. 6:5776.CrossRefGoogle Scholar
Milne-Edwards, H. 1834. Elemens de zoologie: leçons sur l'anatomie, la physiologie, la classification des moeurs des animaux. Crochard; Paris.Google Scholar
Milne-Edwards, H. 1851. Introduction à la zoologie générale. Victor Masson, Paris.CrossRefGoogle Scholar
Nelson, G. J. 1972. Phylogenetic relationship and classification. Syst. Zool. 22:344359.CrossRefGoogle Scholar
Nelson, G. J. 1978. Ontogeny, phylogeny, paleontology, and the biogenetic law. Syst. Zool. 27:324345.CrossRefGoogle Scholar
Ohno, S. 1970. Evolution by Gene Duplication. Springer Verlag; N.Y.CrossRefGoogle Scholar
Pattee, H. H. 1970. The problem of biological hierarchy. In: Waddington, C. H., ed. Towards a Theoretical Biology, Vol. 3. Aldine Publ. Co.; Chicago.Google Scholar
Pattee, H. H. 1972. Laws and constraints, symbols and languages. Pp. 248258. In: Waddington, C. H., ed. Towards a Theoretical Biology, Vol. 4. Aldine Publ. Co.; Chicago.Google Scholar
Patterson, C. and Rosen, D. E. 1977. Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bull. Am. Mus. Nat. Hist. 158:81172.Google Scholar
Piaget, J. 1970. Structuralism. Basic Books; N.Y.Google Scholar
Popper, K. 1964. The Poverty of Historicism. Harper and Row; N.Y.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. J. Paleontol. 40:11781190.Google Scholar
Raup, D. M. 1972. Approaches to morphologic analysis. Pp. 2844. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper, Co., San Francisco.Google Scholar
Riedl, R. 1978. Order in Living Systems. John Wiley and Sons; N.Y.Google Scholar
Roux, W. 1888. Contributions to the developmental mechanics of the embryo. Reprinted (in English translation). Pp. 237, In: Willier, B. H., and Oppenheimer, J., eds. Foundations of Experimental Embryology. (1964). Englewood Cliffs; N.J.Google Scholar
Rudwick, M. J. S. 1964. The inference of structure from function in fossils. Brit. J. Phil. Sci. 15:2740.CrossRefGoogle Scholar
Rudwick, M. J. S. 1968. Some analytic methods in the study of ontogeny in fossils with accretionary skeletons. Paleontol. Soc. Mem. 2:3569.CrossRefGoogle Scholar
Russell, E. S. 1916. Form and Function, A Contribution to the History of Animal Morphology. 383 pp. J. Murray; London.Google Scholar
Russell, E. S. 1945. The Directiveness of Organic Activities. Cambridge Univ. Press, Cambridge, England.Google Scholar
Salthe, S. N. 1975. Problems of macroevolution (molecular evolution, phenotype definition and canalization) as seen from an hierarchical viewpoint. Am. Zool. 15:295314.CrossRefGoogle Scholar
Saunders, P. T. and Ho, M. W. 1981. On the increase in complexity in evolution II. The relativity of complexity and the principle of minimum increase. J. Theor. Biol. 90:515530.Google ScholarPubMed
Schaeffer, B., Hecht, M. K., and Eldredge, N. 1972. Phylogeny and paleontology. Evol. Biol. 6:3146.Google Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S.Genomic versus morphologic rates of evolution: influence of morphological complexity. Paleobiology. 1:6370.CrossRefGoogle Scholar
Seilacher, A. 1970. Arbeitskonzept zur konstruktions-Morphologie. Lethaia. 3:393396.CrossRefGoogle Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. Syst. Zool. 22:451465.CrossRefGoogle Scholar
Seilacher, A. 1979. Constructional morphology of sand dollars. Paleobiology. 5:191221.CrossRefGoogle Scholar
Simon, H. A. 1962. The architecture of complexity. Proc. Am. Philos. Soc. 106:467482.Google Scholar
Simpson, G. G. 1964. The historical factor in science. Pp. 121148. In: This View of Life. Harcourt, Brace, and World, Inc.; N.Y.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; N.Y.CrossRefGoogle Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. J. Paleontol. 42:214229.Google Scholar
Stanley, S. M. 1975. Adaptive themes in the evolution of the Bivalvia (Mollusca). Annu. Rev. Earth Planet. Sci. 3:361385.CrossRefGoogle Scholar
Stanley, S. and Newman, W. A. 1980. Competitive exclusion in evolutionary time: the case of the acorn barnacles. Paleobiology. 6:173183.CrossRefGoogle Scholar
Stebbins, G. L. 1973. Adaptive radiation and the origin of form in the earliest multicellular organisms. Syst. Zool. 22:478485.CrossRefGoogle Scholar
Stebbins, G. L. 1974. Flowering Plants: Evolution Above the Species Level. Harvard Univ. Press; Cambridge.CrossRefGoogle Scholar
Strathmann, R. R. 1975. Limitations on diversity of forms: branching of ambulacral systems of echinoderms. Am. Nat. 109:177190.CrossRefGoogle Scholar
Thomas, R. D. K. 1976. Constraints of ligament growth, form and function on evolution in the Arcoidea (Mollusca: Bivalvia). Paleobiology. 2:6483.CrossRefGoogle Scholar
Thomas, R. D. K. 1979. Constructional morphology. Pp. 482487. In: Fairbridge, R. W., and Jablonski, D., eds. The Encyclopedia of Paleontology. Dowden, Hutchinson, and Ross; London.CrossRefGoogle Scholar
Valentine, J. W. 1975. Adaptive strategy and the origin of grades and ground-plans. Am. Zool. 15:391404.CrossRefGoogle Scholar
Vermeij, G. 1971. Gastropod evolution and morphological diversity in relation to shell geometry. J. Zool., Lond. 163:1523.CrossRefGoogle Scholar
Vermeij, G. 1973. Adaptation, versatility, and evolution. Syst. Zool. 22:466477.CrossRefGoogle Scholar
Vrba, E. S. 1980. Evolution, species, and fossils: how does life evolve? South Afr. J. Sci. 76:6184.Google Scholar
Walker, I. 1979. The mechanical properties of proteins determine the laws of evolutionary change. Acta Biotheor. 28:239282.CrossRefGoogle ScholarPubMed
Weiss, P. A. 1970. Life, order, and understanding. A theme in three variations. The Graduate Journal, Univ. Texas, Austin. 157 pp.Google Scholar
Weiss, P. A., ed. 1971. Hierarchically Organized Systems in Theory and Practice. Hafner; N.Y.Google Scholar
Whyte, L. L. 1965. Internal Factors in Evolution. Braziller; N.Y.CrossRefGoogle ScholarPubMed
Whyte, L. L., Wilson, A. G., and Wilson, D. 1969. Hierarchical Structures. American Elsevier Publ. Co.; N.Y.Google Scholar
Wicken, J. S. 1979. The generation of complexity in evolution: a thermodynamic and information—theoretical discussion. J. Theor. Biol. 77:349365.CrossRefGoogle ScholarPubMed
Wiens, J. A. and Rotenberry, J. T. 1980. Patterns of morphology and ecology in grassland and shrubsteppe bird populations. Ecol. Mon. 50:287308.CrossRefGoogle Scholar
Wiley, E. O. 1976. The phylogeny and biogeography of fossil and Recent gars (Actinopterygii: Lepisosteidae). Misc. Publ. Mus. Nat. Hist. Univ. Kansas. 64:1111.Google Scholar
Williams, G. C. 1966. Adaptation and Natural Selection. Princeton Univ. Press; Princeton.Google Scholar
Wimsatt, W. C. 1974. Complexity and organization. Pp. 6786. In: Schaffner, K. F. and Cohen, R. S., eds. PSA 1972, Boston Studies in the Philosophy of Science, Vol. 20. Reidel; Dordrecht, The Netherlands.Google Scholar
Zuckerkandl, E. 1976. Programs of gene action and progressive evolution. Pp. 387447. In: Goodman, M., and Tashian, R. E., eds. Molecular Anthropology. Academic Press; New York.CrossRefGoogle Scholar