Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T20:33:54.220Z Has data issue: false hasContentIssue false

Fishes on coral reefs: changing roles over the past 240 million years

Published online by Cambridge University Press:  08 April 2016

Christopher H. R. Goatley
Affiliation:
School of Marine and Tropical Biology and Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia. E-mail: [email protected]
David R. Bellwood
Affiliation:
School of Marine and Tropical Biology and Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia. E-mail: [email protected]
Orpha Bellwood
Affiliation:
School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia

Abstract

Key morphological traits reveal changes in functional morphospace occupation of reef fish assemblages over time. We used measurements of key functional attributes (i.e., lower jaw length and orbit diameter) of 208 fossil fish species from five geological periods to create bivariate plots of functional morphological traits through time. These plots were used to examine possible function and ecological characteristics of fossil reef fish assemblages throughout the Mesozoic and Cenozoic. A previously unknown trend of increasing orbit diameter over time became apparent. The Teleostei are the principal drivers of this change. The Eocene appears to mark a dramatic increase in two previously rare feeding modes in fishes: nocturnal feeding and high-precision benthic feeding. Interestingly, members of the Pycnodontiformes had relatively large eyes since the Triassic and appear to be the ecological precursors of their later teleost counterparts and may have been among the earliest nocturnal feeding fishes. Our results highlight potential changes in the roles of fishes on coral reefs through time.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, P. S. L. 2009. Biomechanics, functional patterns, and disparity in Late Devonian arthrodires. Paleobiology 35:321342.Google Scholar
Arratia, G. 1996. The Jurassic and the early history of teleosts. Pp. 243259 in Arratia, G. and Viohl, G., eds. Mesozoic fishes. 1. Systematics and paleoecology. Dr. Friedrich Pfeil, Munich.Google Scholar
Arratia, G. 1999. The monophyly of Teleostei and stem-group teleosts. Consensus and disagreements. Pp. 265334 in Arratia, G. and Schultze, H.-P., eds. Mesozoic fishes. 2. Systematics and fossil record. Dr. Friedrich Pfeil, Munich.Google Scholar
Arratia, G. 2001. The sister-group of the Teleostei: consensus and disagreements. Journal of Vertebrate Paleontology 21:767773.Google Scholar
Arratia, G. 2004. Mesozoic halecostomes and the early radiation of teleosts. Pp. 279315 in Arratia, G. and Tintori, A., eds. Mesozoic fishes. 3. Systematics, paleoenvironments and biodiversity. Dr. Friedrich Pfeil, Munich.Google Scholar
Barthel, K. W., Swinburne, N. H. M., and Morris, S. Conway 1990. Solnhofen: a study in Mesozoic palaeontology. Cambridge University Press, Cambridge.Google Scholar
Bellwood, D. R. 1996. The Eocene fishes of Monte Bolca: the earliest coral reef fish assemblage. Coral Reefs 15:1119.Google Scholar
Bellwood, D. R. 1998. What are reef fishes? Comment on the report by R. Robertson: Do coral reef fish faunas have a distinctive taxonomic structure? Coral Reefs 17:187189.Google Scholar
Bellwood, D. R. 2003. Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29:7183.2.0.CO;2>CrossRefGoogle Scholar
Bellwood, D., and Hoey, A. 2004. Feeding in Mesozoic fishes: a functional perspective. Pp. 639649 in Arratia, G. and Tintori, A., eds. Mesozoic fishes, Vol. 3. Systematics, paleoenvironments and biodiversity. Dr. Friedrich Pfeil, Munich.Google Scholar
Bellwood, D. R., and Wainwright, P. C. 2002. The history and biogeography of fishes on coral reefs. Pp. 532 in Sale, P. F., ed. Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego.CrossRefGoogle Scholar
Bellwood, D. R., Hughes, T. P., Folke, C., and Nyström, M. 2004a. Confronting the coral reef crisis. Nature 429:827833.CrossRefGoogle ScholarPubMed
Bellwood, D. R., van Herwerden, L., and Konow, N. 2004b. Evolution and biogeography of marine angelfishes (Pisces: Pomacanthidae). Molecular Phylogenetics and Evolution 33:140155.CrossRefGoogle ScholarPubMed
Bellwood, D. R., Klanten, S., Cowman, P. F., Pratchett, M. S., Konow, N., and van Herwerden, L. 2010. Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. Journal of Evolutionary Biology 23:335349.Google Scholar
Berumen, M. L., and Pratchett, M. S. 2008. Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon). Behavioral Ecology and Sociobiology 62:989994.Google Scholar
Boucot, A. J. 1981. Principles of benthic marine palaeoecology. Academic Press, New York.Google Scholar
Boucot, A. J. 1990. Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam.Google Scholar
Bruet, B. J. F., Song, J., Boyce, M. C. and Ortiz, C. 2008. Materials design principles of ancient fish armour. Nature Materials 7:748756.Google Scholar
Bürgin, T. 1992. Basal ray-finned fishes (Osteichthyes; Actinopterygii) from the Middle Triassic of Monte San Giorgio (Canton Tessin, Switzerland). Schweizerische Paläontologische Abhandlungen 114:1164.Google Scholar
Cavin, L. 2008. Palaeobiogeography of Cretaceous bony fishes (Actinistia, Dipnoi and Actinopterygii). In Cavin, L., Long-bottom, A., and Richter, M., eds. Fishes and the break-up of Pangaea. Geological Society of London Special Publication 295:165183.Google Scholar
Choat, J. H., and Bellwood, D. R. 1991. Reef fishes; their history and evolution. Pp. 3966 in Sale, P. F., ed. The ecology of fishes on coral reefs. Academic Press, San Diego.CrossRefGoogle Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27:695715.Google Scholar
Cowman, P. F., Bellwood, D. R., and van Herwerden, L. 2009. Dating the evolutionary origins of the wrasses (Labridae) and the rise of trophic novelty on coral reefs. Molecular Phylogenetics and Evolution 52:621631.Google Scholar
Done, T. J. 1992. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121132.Google Scholar
Ferry-Graham, L. A., Wainwright, P. C., and Bellwood, D. R. 2001. Prey capture in long-jawed butterflyfishes (Chaetodontidae): the functional basis of novel feeding habits. Journal of Experimental Marine Biology and Ecology 256:167184.CrossRefGoogle ScholarPubMed
Foote, M. 1997. Sampling, taxonomic description, and our evolving knowledge of morphological diversity. Paleobiology 23:181206.CrossRefGoogle Scholar
Forey, P. L., Yi, L., Patterson, C., and Davies, C. E. 2003. Fossil fishes from the Cenomanian (Upper Cretaceous) of Namoura, Lebanon. Journal of Systematic Palaeontology 1:227330.Google Scholar
Fox, R., Sunderland, T. L., Hoey, A. S., and Bellwood, D. R. 2009. Estimating ecosystem function: contrasting roles of closely related herbivorous rabbitfishes (Siganidae) on coral reefs. Marine Ecology Progress Series 385:261269.Google Scholar
Goatley, C. H. R., and Bellwood, D. R. 2009. Morphological structure in a reef fish assemblage. Coral Reefs 28:449457.CrossRefGoogle Scholar
Graham, N. A. J., Wilson, S. K., Jennings, S., Polunin, N. V. C., Bijoux, J. P., and Robinson, J. 2006. Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences USA 103:84258429.Google Scholar
Holzman, R., and Genin, A. 2005. Mechanisms of selectivity in a nocturnal fish: a lack of active prey choice. Oecologia 146:329336.CrossRefGoogle Scholar
Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., and Roughgarden, J. 2003. Climate change, human impacts, and the resilience of coral reefs. Science 301:929933.Google Scholar
Job, S. D., and Bellwood, D. R. 1996. Visual acuity and feeding in larval Premnas biaculeatus . Journal of Fish Biology 48:952963.Google Scholar
Johnsen, S. 2001. Hidden in plain sight: the ecology and physiology of organismal transparency. Biological Bulletin 201:301318.Google Scholar
Kriwet, Y. 2001. Feeding mechanisms and ecology of pycnodont fishes (Neopterygii, Pycnodontiformes). Mitteilungen aus dem Museum für Naturkunde zu Berlin, Geowissenschaftliche Reihe 4:139165.Google Scholar
Lambers, P. H. 1992. On the ichthyofauna of the Solnhofen Lithographic Limestone (Upper Jurassic, Germany). Rijksuniversiteit Groningen.Google Scholar
Li, K. T., Wetterer, J. K., and Hairston, N. G. Jr. 1985. Fish size, visual resolution and prey selectivity. Ecology 66:17291735.Google Scholar
Lombardo, C. 1999. Sexual dimorphism in a new species of the actinopterygian Peltopleurus from the Triassic of northern Italy. Palaeontology 42:741760.Google Scholar
Lombardo, C., and Tintori, A. 2005. Feeding specializations in Late Triassic fishes. Annali dell'Università degli Studi di Ferrara Museologia Scientifica e Naturalistica, Volume Speciale 2005:2532.Google Scholar
MacLeod, N., Rawson, P. F., Forey, P. L., Banner, F. T., Boudagher-Fadel, M. K., Brown, P. R., Burnett, J. A., Chambers, P., Culver, S., Evans, S. E., Jefferey, C., Kaminski, M. A., Lord, A. R., Milner, A. C., Milner, A. R., Morris, N., Owen, E., Rosen, B. R., Smith, A. B., Taylor, P. D., Urqhart, E., and Young, J. R. 1997. The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, London 154:265292.Google Scholar
Maisey, J. G. 1994. Predator-prey relationships and trophic level reconstruction in a fossil fish community. Environmental Biology of Fishes 40:122.Google Scholar
Marnane, M. J., and Bellwood, D. R. 2002. Diet and nocturnal foraging in cardinalfishes (Apogonidae) at One Tree Reef, Great Barrier Reef, Australia. Marine Ecology Progress Series 231:261268.Google Scholar
Martill, D. M., Taylor, M.A., Duff, K. L., Riding, J. B., and Brown, P. R. 1994. The trophic structure of the biota of the Peterborough Member, Oxford Clay Formation (Jurassic), UK. Journal of the Geological Society 151:173194.Google Scholar
Montani, R., Rothschild, B. M., and Wahl, W. Jr. 1999. Large eyeballs in diving ichthyosaurs. Nature 402:747.CrossRefGoogle Scholar
Motta, P. J. 1989. Dentition patterns among Pacific and Western Atlantic butterflyfishes (Perciformes: Chaetodontidae): relationship to feeding and evolutionary history. Environmental Biology of Fishes 25:159170.Google Scholar
Munday, P. L. 2000. Interactions between habitat use and patterns of abundance in coral-dwelling fishes of the genus Gobiodon . Environmental Biology of Fishes 58:355369.Google Scholar
Myrberg, A. A. Jr., and Fuiman, L. A. 2002. The sensory world of coral reef fishes. Pp. 123148 in Sale, P. F., ed. Coral reef fishes – Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, CA. Google Scholar
Nursall, J. R. 1996a. Distribution and ecology of pycnodont fishes. Pp. 115124 in Arratia, G. and Viohl, G., eds. Mesozoic fishes – Systematics and paleoecology. Dr. Friedrich Pfeil, Munich.Google Scholar
Nursall, J. R. 1996b. The phylogeny of pycnodont fishes. Pp. 125152 in Arratia, G. and Viohl, G., eds. Mesozoic fishes – Systematics and paleoecology. Dr. Friedrich Pfeil, Munich.Google Scholar
Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., McArdle, D., McClenachan, L., Newman, M. J. H., Paredes, G., Warner, R. R., and Jackson, J. B. C. 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955958.Google Scholar
Pankhurst, N. W. 1989. The relationship of ocular morphology to feeding modes and activity periods in shallow marine teleosts from New Zealand. Environmental Biology of Fishes 26:201211.Google Scholar
Poling, K. R., and Fuiman, L. A. 1999. Behavioral specialization in developing sciaenids and its relationship to morphology and habitat. Environmental Biology of Fishes 54:119133.CrossRefGoogle Scholar
Poyato-Ariza, F. J. 2005. Pycnodont fishes: morphologic variation, ecomorphologic plasticity, and a new interpretation of their evolutionary history. Bulletin of the Kitakyushu Museum of Natural History and Human History, Series A (Natural History) 3:169184.Google Scholar
Poyato-Ariza, F. J., and Wenz, S. 2002. A new insight into pycnodontiform fishes. Geodiversitas 24:139248.Google Scholar
Poyato-Ariza, F. J., Talbot, M. R., Fregenal-Martínez, M. A., Meléndez, N., and Wenz, S. 1998. First isotopic and multidisciplinary evidence for nonmarine coelacanths and pycnodontiform fishes: palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 144:6584.Google Scholar
Poyato-Ariza, F. J., Talbot, M. R., Fregenal-Martínez, M. A., Meléndez, N., and Wenz, S. 2005. Akromystax tilmachiton gen. et. sp. nov., a new pycnodontid fish from the Lebanese late Cretaceous of Haqel and En Nammoura. Journal of Vertebrate Paleontology 25:2745.Google Scholar
Reese, E. S. 1989. Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps. Environmental Biology of Fishes 25:7986.Google Scholar
Rice, A. N., and Westneat, M. W. 2005. Coordination of feeding, locomotor and visual systems in parrotfishes (Teleostei: Labridae). The Journal of Experimental Biology 208:35033518.Google Scholar
Richter, G., and Baszio, S. 2006. First evidence of size-related change of diet (“switching”) in a fossil fish. Palaeogeography, Palaeoclimatology, Palaeoecology 237:270279.CrossRefGoogle Scholar
Shand, J. 1997. Ontogenetic changes in retinal structure and visual acuity: a comparative study of coral-reef teleosts with differing post-settlement lifestyles. Environmental Biology of Fishes 49:307322.Google Scholar
Strauss, R. E. 1984. Allometry and functional feeding morphology in haplochrimine cichlids. Pp. 217229 in Echelle, A. A. and Kornfield, I., eds. Evolution of fish species flocks. University of Maine at Orono Press, Maine.Google Scholar
Turingan, R. G. 1994. Ecomorphological relationships among Caribbean tetraodontiform fishes. Journal of Zoology 233:493521.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J., Schindel, D. E., and Zipser, E. 1981. Predation through time: evidence from gastropod shell repair. Science 214:10241026.Google Scholar
Wainwright, P. C., and Bellwood, D. R. 2002. Ecomorphology of feeding in coral reef fishes. Pp. 3355 in Sale, P. F., ed. Coral reef fishes — Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, CA. Google Scholar
Wainwright, P. C., and Richard, B. A. 1995. Predicting patterns of prey use from morphology of fishes. Environmental Biology of Fishes 44:97113.Google Scholar
Wainwright, P. C., Bellwood, D. R., Westneat, M. W., Grubich, J. R., and Hoey, A. S. 2004. A functional morphospace for the skull of labrid fishes: patterns of diversity in a complex biomechanical system. Biological Journal of the Linnean Society 82:125.Google Scholar
Warrant, E. 2004. Vision in the dimmest habitats on Earth. Journal of Comparative Physiology A 190:765789.Google Scholar
Webb, P. W., Hardy, D. H., and Mehl, V. L. 1992. The effect of armoured skin on the swimming of longnose gar, Lepisosteus osseus . Canadian Journal of Zoology 70:11731179.Google Scholar
Wood, R. A. 1999. Reef evolution. Oxford University Press, Oxford.Google Scholar
Supplementary material: File

Goatley et al. supplementary material

Appendix 1

Download Goatley et al. supplementary material(File)
File 476.2 KB
Supplementary material: File

Goatley et al. supplementary material

Appendix 2

Download Goatley et al. supplementary material(File)
File 50.2 KB
Supplementary material: File

Goatley et al. supplementary material

Appendix 3

Download Goatley et al. supplementary material(File)
File 46.6 KB
Supplementary material: File

Goatley et al. supplementary material

Appendix 4

Download Goatley et al. supplementary material(File)
File 48.1 KB