Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:06:06.623Z Has data issue: false hasContentIssue false

Faunal invasions as a source of morphological constraints and innovations? The diversification of the early Cardioceratidae (Ammonoidea; Middle Jurassic)

Published online by Cambridge University Press:  08 April 2016

Nicolas Navarro
Affiliation:
UMR CNRS 5561 Biogéosciences, Centre des Sciences de la Terre, Université de Bourgogne, 6 boulevard Gabriel, F-21000 Dijon, France. E-mail: [email protected], [email protected]
Pascal Neige*
Affiliation:
UMR CNRS 5561 Biogéosciences, Centre des Sciences de la Terre, Université de Bourgogne, 6 boulevard Gabriel, F-21000 Dijon, France. E-mail: [email protected], [email protected]
Didier Marchand
Affiliation:
UMR CNRS 5561 Biogéosciences, Centre des Sciences de la Terre, Université de Bourgogne, 6 boulevard Gabriel, F-21000 Dijon, France. E-mail: [email protected], [email protected]
*
Corresponding author

Abstract

Multivariate analysis of shell characters and quantification of morphological diversity (morphospace occupation and disparity) are used here to investigate the modes of morphological diversification of ammonites. We define five events in early cardioceratid history that connect geographical changes causing emigration or immigration phases with biodiversity dynamics: (1) the initial colonization of the Arctic Basin by the Cardioceratidae at the end of the Bajocian, Middle Jurassic; (2) the first appearance of the Kosmoceratidae clade in the Boreal Realm during the Bathonian; (3) the ensuing expansion phase of this clade in the Boreal Realm; (4) the first phase of migration of the Cardioceratidae (early Callovian) through Eastern Europe, Western Britain and the Yukon corridor; and (5) the second unrelated migration phase in the Western Interior only. Analysis of spatial occupation shows that acquisition of this field occurs essentially by replacement or subdivision of preexisting peaks of occupation. These replacements seem to follow different patterns: progressive trend, saturation, iteration, and apparent preferential extinction. We describe these patterns and suggest different factors that may have shaped them, including a morphological differentiation that has been interpreted by various authors as sexual dimorphism. Another factor that could cause disparity modification is fluctuations in the ammonites' proximal environment. The effect of immigrating faunas is a third (and preponderant) factor that is prominent in the studied example: immigration phases of the Cardioceratidae lead to increased morphological diversity, whereas the spread of nonindigenous species reduces it and is contemporaneous with a morphological shift in the native clade. We thus demonstrate here that geographical constraints play a significant role in the expression of innovation and may be seen as a major factor in macroevolutionary dynamics.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerly, S. C. 1989. Kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology 15:147164.CrossRefGoogle Scholar
Alroy, J., Koch, P. L., and Zachos, J. C. 2000. Global climate change and North American mammalian evolution. In Erwin, D. H. and Wing, S. L., eds. Deep Time: Paleobiology's Perspective. Paleobiology 26(Suppl. to No. 4):259288.Google Scholar
Batt, R. J. 1989. Ammonite shell morphotype distribution in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios 4:3242.Google Scholar
Batt, R. J. 1993. Ammonite shell morphotypes as indicators of oxygenation in ancient epicontinental seas: Example from Late Cretaceous Greenhorn Cyclothem (U.S.A.). Lethaia 26:4964.CrossRefGoogle Scholar
Bayer, U., 1978. Morphologic programs, instabilities and evolution: A theoretical study. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 156:226261.Google Scholar
Bayer, U. and McGhee, G. 1984. Iterative evolution of Middle Jurassic faunas. Lethaia 17:4351.CrossRefGoogle Scholar
Callomon, J. H. 1959. The ammonite zones of the Middle Jurassic beds of east Greenland. Geological Magazine 96:505513.Google Scholar
Callomon, J. H. 1963. Sexual dimorphism in Jurassic ammonites. Transactions of the Leicester Literary and Philosophical Society 57.Google Scholar
Callomon, J. H. 1975. Jurassic ammonites from the northern North Sea. Norsk Geologisk Tidsskrift 55:373386.Google Scholar
Callomon, J. H. 1979. Marine Boreal Bathonian fossils from the northern North Sea and their palaeogeographical significance. Proceedings of the Geologists Association 90:163169.CrossRefGoogle Scholar
Callomon, J. H. 1984. A review of the biostratigraphy of the post-Lower Bajocian Jurassic ammonites of western and northern America. In Westermann, G. E. G., ed. Jurassic-Cretaceous biochronology and paleogeography of North America. Geological Association of Canada Special Paper 27:143174.Google Scholar
Callomon, J. H. 1985. The evolution of the Jurassic ammonite family Cardioceratidae. In Cope, J. C. W. and Skelton, P. R., eds. Evolutionary case histories from the fossil record. Special Papers in Palaeontology 33:4990. Palaeontological Association, London.Google Scholar
Callomon, J. H. 1993. The ammonite succession in the Middle Jurassic of East Greenland. Bulletin of the Geological Society of Denmark 40:83113.Google Scholar
Callomon, J. H., Dietl, G., and Page, K. N. 1988. On the ammonite faunal horizons and standard zonations of the Lower Callovian stage in Europe. Pp. 359376in Rocha, R. B. and Soares, A. F., eds. 2nd International Symposium on Jurassic Stratigraphy, Lisbon 1987. Universidade Nova de Lisboa, Lisbon1.Google Scholar
Callomon, J. H., and Wright, J. K. 1989. Cardioceratid and Kosmoceratid ammonites from the Callovian of Yorkshire. Palaeontology 32:799836.Google Scholar
Cariou, E., Enay, R., Atrops, F., Hantzpergue, P., Marchand, D., and Rioult, M. 1997. Oxfordien. In Cariou, E. and Hantzpergue, P., eds. Biostratigraphie du Jurassique ouest-européen et méditerranéen. Zonation parallèles et distribution des invertébrés et microfossiles. Bulletin du centre de recherches Elf exploration production 17:7986.Google Scholar
Chamberlain, J. A. 1980. The role of body extension in cephalopod locomotion. Palaeontology 23:445461.Google Scholar
Chamberlain, J. A. 1981. Hydromechanical design of fossil cephalopods. In House, M. R. and Senior, J. R., eds. The ammonoidea. Systematic Association Special Volumes 18:289–236. Academic Press, London and New York.Google Scholar
Dagys, A. S., and Weichschat, W. 1993. Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113121.Google Scholar
Dam, G., and Surlyck, F. 1998. Stratigraphy of the Neill Klinter Group: a Lower-lower Middle Jurassic tidal embayment succession, Jameson Land, East Greenland. Geology of Greenland Survey Bulletin 175.CrossRefGoogle Scholar
Dietl, G. v., and Callomon, J. H. 1988. On the Orbis Oolite in the Upper Bathonian (Middle Jurassic) of Sengenthal/Opf., Franconian Alb, and its significance for the correlation and subdivision of the Orbis Zone. Stuttgarter Beiträge zur Naturkunde, serie B, Geologie und Paläontologie 142.Google Scholar
Dommergues, J.-L., Cariou, E., Contini, D., Hantzpergue, P., Marchand, D., Meister, C., and Thierry, J. 1989. Homéomorphies et canalisations évolutives: le rôle de l'ontogenèse. Quelques exemples pris chez les ammonites du Jurassique. Geobios 22:548.Google Scholar
Dommergues, J.-L., Laurin, B., and Meister, C. 1996. Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219240.Google Scholar
Donovan, D. T., Callomon, J. H., and Howarth, M. K. 1981. Classification of the Jurassic ammonitina. In House, M. R. and Senior, J. R., eds. The Ammonoidea. Systematic Association Special Volumes 18:101155. Academic Press, London and New York.Google Scholar
Eble, G. J. 2000a. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26:5679.2.0.CO;2>CrossRefGoogle Scholar
Eble, G. J. 2000b. Theoretical Morphology: State of the Art. Paleobiology 26:520528.Google Scholar
Eble, G. J. 2002. Developmental Morphospaces and Evolution. Pp. 3565in Crutchfield, J. P. and Schuster, P., eds. Evolutionary Dynamics. Oxford University Press, Oxford.Google Scholar
Efron, B. 1979. Bootstrap Methods: Another Look at the jacknife. Annals of Statistics 7:126.Google Scholar
Efron, B. and Tibshirani, R. J. 1993. An Introduction to the bootstrap. Chapman and Hall, New York.CrossRefGoogle Scholar
Elmi, S. 1993. Loi des aires, couche-limite et morphologie fonctionnelle de la coquille des céphalopodes (ammonoidés). Geobios MS 15:121138.Google Scholar
Enay, R. and Cariou, E. 1997. Ammonite faunas and paleobiogeography of the Himalayan belt during the Jurassic: Initiation of a Late Jurassic austral ammonite fauna. Palaeogeography, Palaeoclimatology, Palaeoecology 134:138.Google Scholar
Foote, M. 1991a. Morphologic patterns of diversification: examples from Trilobites. Palaeontology 34:461485.Google Scholar
Foote, M. 1991b. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology. University of Michigan 28:101140.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Foote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.CrossRefGoogle Scholar
Foote, M. 1994a. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.Google Scholar
Foote, M. 1994b. Morphology of Ordovician-Devonian crinoids. Contributions from the Museum of Paleontology, University of Michigan 29:139.Google Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.Google Scholar
Foote, M. 1996. Ecological controls on the evolutionary recovery of post-Paleozoic Crinoids. Science 274:14921495.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic Crinoids. Paleobiology Memoirs No. 1. Paleobiology 25(Suppl. to No. 2).Google Scholar
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Veen, P. v., Thierry, J., and Huang, Z. 1994. A Mesozoic time scale. Journal of Geophysical Research 99(B12):24.05124.074.Google Scholar
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Veen, P. v., Thierry, J., and Huang, Z. 1995. A Triassic, Jurassic and Cretaceous time scale. SEPM special publications 54:95126.Google Scholar
Hallam, A. 1985. A review of Mesozoic climates. Journal of the Geological Society (London) 142:433445.Google Scholar
Hänfling, B. and Kollmann, J., 2002. An evolutionary perspective of biological invasions. Trends in Ecology & Evolution 17:545546.Google Scholar
Hellberg, M. E., Balch, D. P., and Roy, K. 2001. Climate-driven range expansion and morphological evolution in a marine gastropod. Science 292:17071710.Google Scholar
Hillebrandt, A. P. v. Smith, Westermann, G. E. G., and Callomon, J. H. 1992. Ammonite zones of the circum-Pacific region. Pp. 247272in G. E. G. Westermann.Google Scholar
Ihake, R. and Gentleman, R. 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5:299314.Google Scholar
Imlay, R. W. 1965. Jurassic marine faunal differentiation in North America. Journal of Paleontology 39:10231038.Google Scholar
Jacobs, D. K. 1992. Shape, drag, and power in ammonoid swimming. Paleobiology 18:203220.Google Scholar
Jacobs, D. K. and Landman, N. H. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26:101188.Google Scholar
Jakobs, D. K., Landman, N. H., and Chamberlain, J. A. 1994. Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905908.Google Scholar
Keyserlying, A. v. 1846. Wissenschaftliche Beobachtungen auf einer Reise in das Petschoraland im Jahre 1843. Carl Kray, St. Petersburg.Google Scholar
Madsen, V. 1904. On Jurassic fossils from east-Greenland. Meddelelser om Gr⊘nland 29:157211.Google Scholar
Makowski, H. 1963. Problem of sexual dimorphism in Ammonites. Palaeontologia Polonica 12.Google Scholar
Matyja, B. A. 1986. Developmental polymorphism in Oxfordian ammonites. Acta Geologica Polonica 36:3768.Google Scholar
Matyja, B. A. 1994. Developmental polymorphism in the Oxfordian ammonite subfamily Peltoceratinae. Palaeopelagos Special Publication 1:277286.Google Scholar
McGhee, G. R. 1999. Theoretical Morphology. The concept and its applications. Columbia University Press, New York.Google Scholar
McKinney, M. L. 1990. Classifying and analyzing evolutionary trends. Pp. 2858in McNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.Google Scholar
Meledina, S. V. 1973. Ammonites and zonal stratigraphy of the Bajocian-Bathonian of Siberia. Trudy, Institut Geologiya y Geofisika Akademiya Nauk SSSR Sibirskikh Otdelemia 153. [In Russian.]Google Scholar
Meledina, S. V. 1977. Ammonites and zonal stratigraphy Callovian of Siberia. Trudy, Institut Geologiya y Geofisika Akademiya Nauk SSSR Sibirskikh Otdelemia 356. [In Russian.]Google Scholar
Moyle, P.B., and Light, T., 1996. Biological invasions of fresh water: empirical rules and assembly theory. Biological Conservation 78:149161.Google Scholar
Navarro, N. 2003. MDA: a MATLAB-based program for the morphospace-disparity analysis. Computers & Geosciences 29:655664.Google Scholar
Neige, P. 2003. Spatial patterns of disparity and diversity of the Recent cuttlefishes (Cephalopoda) across the Old World. Journal of Biogeography 30:11251137.Google Scholar
Neige, P., Elmi, S., and Rulleau, L. 2001. Existe-t-il une crise au passage Lias-Dogger chez les ammonites? Approche morphométrique par quantification de la disparité morphologique. Bulletin de la Société géologique de France 172:257264.Google Scholar
Neige, P., Marchand, D., and Bonnot, A. 1997. Ammonoid morphological signal versus sea-level changes. Geological Magazine 134:261264.Google Scholar
Newton, E. T. and Teall, J. H. H. 1897. Notes on a collection of rocks and fossils from Franz Josef Land, made by the Jackson-Harmsworth Expedition during 1894–1896. Quarterly Journal of the Geological Society of London 53:477519.Google Scholar
Owen, H. G. 1983. Atlas of continental displacement, 200 Million years to the present. Cambridge University Press, Cambridge.Google Scholar
Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:3552.Google Scholar
Poulton, T. P. 1987. Zonation and correlation of Middle Boreal Bathonian to Lower Callovian (Jurassic) ammonites, Salmon Cache Canyon, Porcupine River, northern Yukon. Geological Survey of Canada Bulletin 358.CrossRefGoogle Scholar
Poulton, T. P., Detterman, R. L., Hall, R. L., Jones, D. L., Peterson, J. A., Smith, P., Taylor, D. G., Tipper, H. W., and Westermann, G. E. G. 1992. Western Canada and United States. Pp. 2992in Westermann, G. E. G.Google Scholar
Pozaryska, K. and Brochwicz-Lewinski, W. 1975. The nature and origin of Mesozoic and early Cenozoic marine faunal provinces—some reflections. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 44:207216.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Rawson, P. F. 1982. New Arctocephalitinae (Ammonoidea) from the Middle Jurassic of Kong Karls Land, Svalbard. Geological Magazine 119:95100.Google Scholar
Reid, R. E. H. 1973. Origin of the Mesozoic “Boreal” realm. Geological Magazine 110:6782.Google Scholar
Roy, K., Jablonski, D. and Martien, K. K. 2000. Invariant size–frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences USA 97:1315013155.Google Scholar
Salfeld, H., and Frebold, H. 1924. Jura- und Kreidefossilien von Nowaya Zemlya. Rept Sci. Res. Norwegian Exped. Novaya Zemlya 23. Videnskapsselskapet i Kristiania, Oslo.Google Scholar
Saunders, W. B., and Swan, A. R. H. 1984. Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195228.Google Scholar
Saunders, W. B., and Shapiro, E. A. 1986. Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:6479.Google Scholar
Savazzi, E. 1990. Biological aspects of theoretical shell morphology. Lethaia 23:195212.Google Scholar
Schindel, D. E. 1990. Unoccupied morphospace and the coiled geometry of gastropods: Architectural constraint or geometric covariation? Pp. 270304in Ross, R. A. and Allmon, W. D., eds. Causes of evolution. University of Chicago Press, Chicago.Google Scholar
Sey, I., Repin, Y. S., Kalacheva, E. D., Okuneva, T. M., Paraketsov, K. V., and Polubotko, I. V. 1992. Eastern Russia. Pp. 225245in Westermann, G. E. G., ed.Google Scholar
Smith, L. H. 1998. Species level phenotypic variation in Lower Paleozoic trilobites. Paleobiology 24:1736.Google Scholar
Spath, L. F. 1932. The invertebrate faunas of the Bathonian-Callovian deposits of Jameson Land (East Greenland). Meddelelser om Gr⊘nland 87(No. 7).Google Scholar
Surlyck, F., and Noe-Nygaard, N. 2000. Jurassic sequence stratigraphy of east Greenland. GeoResearch Forum 6:357366.Google Scholar
Taylor, D. G., Callomon, J. H., Hall, R. H., Smith, P. L., Tipper, H. W., and Westermann, G. E. G. 1984. Jurassic Ammonite bio-geography of western North America: the tectonic implications. In Westermann, G. E. G., ed. Jurassic-Cretaceous Biochronology and Paleogeography of North America. Geological Association of Canada Special Paper 27:121141.Google Scholar
Thierry, J., Cariou, E., Elmi, S., Mangold, C., Marchand, D., and Rioult, M. 1997. Callovien. In Cariou, E. and Hantzpergue, P., eds. Biostratigraphie du Jurassique ouest-européen et méditerranéen. Zonation parallèles et distribution des invertébrés et microfossiles. Bulletin du centre de recherches Elf exploration production 17:6378.Google Scholar
Tintant, H., Marchand, D., and Mouterde, R. 1982. Relations entre les milieux marins et l'évolution des Ammonoides: Les radiations adaptatives du Lias. Bulletin de la Société Géologique de France 24:951961.Google Scholar
Trueman, A. E. 1941. The ammonite body chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal of the Geological Society of London 96:339383.Google Scholar
Underhill, J. R., and Partington, M. A. 1993. Use of genetic sequence stratigraphy in defining and determining a regional tectonic control on the “Mid-Cimmerian unconformity”—Implications for the North Sea basin development and the global sea level chart. In Weiner, P. and Posamentier, H. W., eds. Siliciclastic sequence stratigraphy: recent developments and applications. AAPG memoir 58:449492.Google Scholar
Valentine, J. W. 1971. Plate tectonics and shallow marine diversity and endemism, an actualistic model. Systematic Zoology 20:253264.Google Scholar
Vinogradov, A. P. 1968. Atlas of the lithological and paleogeographical maps of URSS, Vol. Ill:Triassic, Jurassic and Cretaceous. Ministry of Geology of the URSS, Academy of Sciences of the URSS.Google Scholar
Wagner, P. J. 1996. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution 50:9901007.Google Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology 23:115150.Google Scholar
Wand, M. P. 1994. Fast Computation of Multivariate Kernel Estimators. Journal of Computational and Graphical Statistics 3:433445.Google Scholar
Wand, M. P., and Jones, M. C. 1995. Kernel Smoothing. Chapman and Hall, London.Google Scholar
Ward, P. 1980. Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology 6:3243.Google Scholar
Westermann, G. E. G. 1992. The Jurassic of Circum-Pacific. Cambridge University Press, Cambridge.Google Scholar
Westermann, G. E. G. 1996. Ammonoid Life and Habitat. Pp. 607707in Landman, N. H., Tanabe, K. and Davis, R. A., eds. Ammonoid Paleobiology. Plenum Press, New York.Google Scholar
Whitfield, R. P. 1907. Notes on some Jurassic fossils from Franz Josef Land, brought by a member of the Ziegler Exploring Expedition. Bulletin of the American Museum of Natural History 22:131134.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index. A comparison of Cambrian and Recent arthropods. Paleobiology 20:93110.Google Scholar
Ziegler, B. 1967. Ammoniten-Ökologie am Beispiel des Oberjura. Geologische Rundschau 56:439464.CrossRefGoogle Scholar
Ziegler, P. A. 1988. Evolution of the Arctic-North Atlantic and the Western Tethys. AAPG memoir 43.Google Scholar