Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T15:15:12.109Z Has data issue: false hasContentIssue false

Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach

Published online by Cambridge University Press:  08 February 2016

George D. Stanley Jr.
Affiliation:
Department of Geology, University of Montana, Missoula, Montana 59812
Peter K. Swart
Affiliation:
Division of Marine Geology & Geophysics, RSMAS, University of Miami, Miami, Florida 33149

Abstract

Scleractinian corals first appeared during Triassic time in tropical shallow water environments. Controversy surrounds the paleoecology of scleractinian corals of the Late Triassic. Were they like their living counterparts, capable of supporting reefs, or had they not yet coevolved the important association with zooxanthellae that facilitated reef growth and construction? Indirect evidence suggests that some Upper Triassic corals from the Tethys played important constructional roles as reef builders within tropical carbonate complexes of the Tethys. To evaluate this idea, we have employed a geochemical approach based on isotope fractionation to ascertain if Late Triassic corals once possessed zooxanthellae.

We have determined evidence for the ancient presence of algal symbiosis in 13 species of Triassic scleratinians from reef complexes in Turkey and northern Italy. In contrast, two higher latitude Jurassic species used as a control group for isotope analysis, lacked isotopic indications of symbiosis. These findings, together with stratigraphic and paleoecologic criteria, support the contention that Late Triassic scleractinian corals inhabiting shallow-water carbonate complexes of the Tethys were predominantly zooxanthellate, like their living counterparts from present day reefs.

We view the zooxanthellate condition in calcifying reef organisms as a necessary prerequisite for constructional reef development. Our results emphasize the power of stable isotope studies in helping to answer paleobiological questions.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Benton, M. 1986. More than one event in the late Triassic mass extinction. Nature (London) 321:857861.CrossRefGoogle Scholar
Bizzarini, F., Laghi, G. F., Nicosia, U., and Russo, F. G. 1990. Distribuzione stratigrafica dei microcrinoidi (Echinodermata) nella Formazione di S. Cassiano (Triassico superiore, Dolomiti): studio preliminare. Alti Soc. Nat. Mat. Modena 120: Modena.Google Scholar
Coates, A. G., and Jackson, J. B. C. 1987. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13:363378.CrossRefGoogle Scholar
Coates, A. G., and Oliver, W. A. Jr. 1973. Coloniality in zoantharian corals. Pp. 226in Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr., eds. Animal colonies: development and function through time. Dowden, Hutchinson, and Ross, Stroudsburg, Penn.Google Scholar
Cowen, R. 1983. Algal symbiosis and its recognition in the fossil record. Pp. 431478in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Cowen, R. 1988. The role of algal symbiosis in reefs through time. Palaios 3:221227.CrossRefGoogle Scholar
Cuif, J.-P. 1974. Recherches sur les Madréporaires du Trias. II. Astraeoida, Révision des genres Montlivaltia et Thecosmilia. Étude de quelques types structuraux du Trias de Turquie. Bulletin du Museum National d'Histoire Naturelle, Sciences de la Terre 40(275):293400.Google Scholar
Cuif, J.-P. 1975. Recherches sur les Madréporaires du Trias. III. Étude des structures pennulaires chez les Madreporaires triasiques. Bulletin de Muséum National d'Histoire Naturelle, Sciences de la Terre 44:46127.Google Scholar
Cuif, J.-P. 1976. Recherches sur les Madréporaires du Trias. IV. Formes cério-méandröides et thamnastériödes du Trias des Alpes et du Taurus sudanatolian. Bulletin du Museum National d'Histoire Naturelle, Sciences de la Terre 53:68195.Google Scholar
Cuif, J.-P., Denis, A., Gautret, P., Marin, F., Mastandrea, A., and Russo, F. 1992. Recherches sur l'altération diagénétique des biominéralisations carbonatées: évolution de la phase organique intrasquelettique dans des polypiers aragonitiques de Madréporaires du Cénozoique (Bassin de Paris), et du Trias superieur (Dolomites et Turquie). Comptes Rendus Academie Sciences Paris, Série II 314:10971102.Google Scholar
Druffel, E. R. M., and Benavides, L. M. 1986. Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge. Nature (London) 321:5861.CrossRefGoogle Scholar
Emiliani, C., Hudson, J. H., Shinn, E. A., and George, R. Y. 1979. Oxygen and carbon isotopic growth record in a reef coral from the Florida Keys and a deep sea coral from Blake Plateau. Science 202:627629.CrossRefGoogle Scholar
Erez, J. 1978. Vital effects on stable isotope composition seen in foraminifera and corals skeletons. Nature (London) 273:199202.CrossRefGoogle Scholar
Fagerstrom, J. A. 1987. The evolution of reef communities. Wiley & Sons, New York.Google Scholar
Fairbanks, R. G., and Dodge, R. E. 1979. Annual periodicity of the 18O/16 and 13C/12C ratios in the coral Montastrea annularis. Geochimica et Cosmochimica Acta 3:10091020.CrossRefGoogle Scholar
Flügel, E. 1981. Paleoecology and facies of Upper Triassic reefs in the Northern calcareous Alps. Pp. 291359in Toomey, D. F., ed. European fossil reef models: special publication 30. Society of Economic Paleontologists and Mineralogists, Tulsa, Okla.CrossRefGoogle Scholar
Flügel, E. 1982. Evolution of Triassic reefs: current concepts and problems. Facies 6:297328.CrossRefGoogle Scholar
Gautret, P. and Marin, F. 1993. Tendances diagénétiques des structures aragonitiques fibreuses produites par des Spongiaires et des Madréporaires du Trias supérieur de Turquie. Comptes Rendus Academie Sciences Paris, Série II 316:13191325.Google Scholar
Gruszczyński, M., Hoffman, A., Malkowski, K., Tatur, A., and Halas, S. 1990. Some geochemical aspects of life and burial environments of late Jurassic scleractinian corals from northern Poland. Neues Jahrbuch für Geologie und Paläontologie Mitteilungen Monatschrift 11:673686.CrossRefGoogle Scholar
James, N. P. 1974. Diagenesis of scleractinian corals in the sub-aerial vadose zone. Journal of Petrology 48:785799.Google Scholar
Laghi, G. F., Martinelli, G., and Russo, F. 1984. Localization of minor elements by EDS microanalysis in aragonitic sponges from the St. Cassian Beds, Italian Dolomites. Lethaia 17:133138.Google Scholar
Land, L. S. 1989. The carbon and oxygen isotopic chemistry of surficial Holocene shallow marine carbonate sediment and Quaternary limestone and dolomite. Pp. 191218in Fritz, P. and Fontes, J. C., eds. Handbook of environmental geochemistry, Vol. 3. Elsevier, Amsterdam.Google Scholar
Land, L. S., Lang, J. C., and Smith, B. N. 1977. On the stable carbon and oxygen isotopic composition of some shallow water ahermatypic scleractinian coral skeletons. Geochimica, Cosmochimica Acta 41:169172.CrossRefGoogle Scholar
Leder, J. J., Szmant, A.M., and Swart, P.K. 1991. A effect of prolonged ‘bleaching’ on skeletal banding and stable isotopic composition in Montastrea annularis. Coral Reefs 10:1927.CrossRefGoogle Scholar
Lindh, T. N. 1983. Temporal variations in 13C, 34S and global sedimentation during the Phanerozoic. Masters thesis. University of Miami.Google Scholar
Marcoux, J., and Poisson, A. 1972. Une nouvelle unité structurale majeure dans les nappes d'Antalya: la nappe inférieure et ses séries mésozoïques radiolaritiques (Taurides occidentales, Turquie). Comptes Rendus Academie Sciences Paris, Série D 275:655658.Google Scholar
McConnaughey, T. A. 1989. 13C and 18O disequilibrium in biological carbonates. I. Patterns. Geochimica et Cosmochimica Acta 53:151162.CrossRefGoogle Scholar
Montanaro-Gallitelli, E., Morandi, N., and Pirani, R. 1974. Some geochemical data on a Triassic coral fauna. Proceedings of the Second International Coral Reef Symposium, Great Barrier Reef Committee, Brisbane 2:457459.Google Scholar
Newell, N. D. 1971. An outline history of tropical organic reefs. American Museum Novitates 2465:137.Google Scholar
Riedel, P. 1990. Rifbiotope im Karn und Nor (Öbertrias) der Tethys: Entwicklung, Einschnitte, und Diversitatsmuster. Ph.D. dissertation. Universität Erlangen-Nürnberg, 96 p., 15 pis., Erlangen.Google Scholar
Riedel, P. 1991. Korallen in der Trias der Tethys: Stratigraphische Reichweiten, Diversitatsmuster, Entwicklungstrends und Bedeutung als Rifforganismens. Mitteilungen der Gesellschaft der Geologie—und Bergbaustudenten in Österreich 37:97118.Google Scholar
Rittel, J., and Stanley, G. D. Jr. 1994. Enhanced skeletal details and diagenetic processes of Triassic corals revealed by cathodoluminescence. Courier Forschungsinstitute Senkenberg 164:339346.Google Scholar
Robertson, A. H. F., and Woodcock, H. H. 1981. Alakir Cay Group, Antalya complex, S. W. Turkey: a deformed Mesozoic carbonate margin. Sedimentary Geology 30:95131.CrossRefGoogle Scholar
Roniewicz, E. 1984. Aragonitic Jurassic corals from erratic boulders on the south Baltic coast. Annales Societatis Geologorum Poloniae Rocznik Polskiego Towarzystwa Geologticznego 54:6577.Google Scholar
Roniewicz, E. 1989. Triassic scleractinian corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Österreiche Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse Denschrift 126:1152.Google Scholar
Roniewicz, E., and Morycowa, E. 1989. Triassic Scleractinia and the Triassic/Liassic boundary. Australasian Palaeontologists Memoir 8:347354.Google Scholar
Rosen, B. R. 1977. Depth distribution of Recent hermatypic corals and its palaeontological significance. Second Symposium international sur les coraux et récifs coralliens fossiles. Bureau Recherches Géologiques et Minières Mémoire 89:507517.Google Scholar
Rowan, R., and Powers, D. A. 1991. A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis. Science 251:13481351.CrossRefGoogle Scholar
Russo, F., Neri, C., Mastandrea, A., and Laghi, G. 1991. Depositional and diagenetic history of the Alpe di Specie (Seelandalpe) fauna (Carnian, northeastern Dolomites). Facies 25:197210.CrossRefGoogle Scholar
Schäfer, P. 1984. Development of ecologic coral reefs during the latest Triassic (Rhaetian) of the Northern Limestone Alps. Palaeontographica Americana 54:210218.Google Scholar
Shcerer, M. 1977. Preservation, alteration and multiple cementation of aragonitic skeletons from the Cassian beds (Upper Triassic, southern Alps): petrographic and geochemical evidence. Neues Jahrbuch für Geologie und Paläontologie Abhandlung 154:213265.Google Scholar
Stanley, G. D. Jr. 1981. Early history of scleractinian corals and its geological consequences. Geology 9:507511.2.0.CO;2>CrossRefGoogle Scholar
Stanley, G. D. Jr. 1988. The history of Early Mesozoic reef communities: a three-step process. Palaios 3:170183.Google Scholar
Stanley, G. D. Jr. 1992. Tropical reef ecosystems. Pp. 375388in Nierenberg, W. A., ed. Encyclopedia of earth system science, Vol. 4. Academic Press, New York.Google Scholar
Stanley, G. D. Jr., and Beauvais, L. 1994. Corals from an Early Jurassic coral reef in British Columbia: refuge on an oceanic island reef. Lethaia 27:3547.CrossRefGoogle Scholar
Stanley, G. D. Jr., and Cairns, S. D. 1988. Constructional azooxanthellate coral communities: an overview with implications for the fossil record. Palaios 3:233242.Google Scholar
Stanley, G. D. Jr., and McRoberts, C. A. 1993. A coral reef in the Telkwa Range, British Columbia: the earliest Jurassic example. Canadian Journal of Earth Science 30:819831.CrossRefGoogle Scholar
Stanton, R. J., and Flügel, E. 1987. Paleocology of Upper Triassic reefs in the northern calcareous Alps: reef communities. Facies 16:157186.CrossRefGoogle Scholar
Stanton, R. J., and Flügel, E. 1989. Problems with reef models: the late Triassic Steinplatte “reef” (northern Alps, Salzburg/Tyrol, Austria). Facies 20:1138.CrossRefGoogle Scholar
Steam, C. W., Scoffin, T. P., and Martindale, W. 1977. Calcium carbonate budget of a fringing reef on the west coast of Barbados, part I—zonation and productivity. Bulletin of Marine Science 27:479510.Google Scholar
Swart, P. K. 1983. Carbon and oxygen isotope fractionation in scleractinian corals. Earth Science Review 19:5180.CrossRefGoogle Scholar
Swart, P. K., and Coleman, M. L. 1980. Isotopic data for scleractinian corals explain their palaeotemperature uncertainty. Nature (London) 283:557559.CrossRefGoogle Scholar
Swart, P. K., Burns, S. J., and Leder, J. J. 1991. Fractionation of carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology (Isotope Geosciences Section) 86:217224.CrossRefGoogle Scholar
Talent, J. A. 1988. Organic reef-building episodes of extinction and symbiosis? Senkenbergiana Lethaea 69:315368.Google Scholar
Teichert, C. 1958. Cold- and deep-water coral banks. Bulletin American Association Petroleum Geologists 42:10641082.Google Scholar
Tozer, E. T. 1988. Rhaetian: a substage not a stage. Albertiana 7:915.Google Scholar
Volz, W. 1896. Die Korallenfauna der Trias II. Die Korallen der Schichten von St. Cassian in Süd Tirol. Palaeontographica 43:1124.Google Scholar
Weber, J. N. 1973. Deep sea ahermatypic scleractinian corals: isotopic composition of the skeleton. Deep Sea Research 20:901909.Google Scholar
Weber, J. N., and Woodhead, P. M. J. 1970. Carbon and oxygen isotope fractionation in the skeletal carbonate of reef building corals. Chemical Geology 6:93117.CrossRefGoogle Scholar
Weber, J. N., and Woodhead, P. M. J. 1972. Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research 77:463473.CrossRefGoogle Scholar
Weber, J. N., Deines, P., Weber, P. H., and Baker, P. A. 1976. Depth changes in the C-13/C-12 ratio of skeletal carbonate deposited by Caribbean reef-frame building coral Montastrea annularis: further implications of a model for stable isotope fractionation by scleractinian corals. Geochimica et Cosmochimica Acta 40:3139.CrossRefGoogle Scholar
Wells, J. W. 1956. Scleractinia. Pp. F328F444in Moore, R. C., ed. Treatise on Invertebrate Paleontology, Part F, Coelentrata. Geological Society of American and University of Kansas Press, Lawrence, Kans.Google Scholar