Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T02:09:12.426Z Has data issue: false hasContentIssue false

Evidence that more than a third of Paleozoic articulate brachiopod genera (Strophomenata) lived infaunally

Published online by Cambridge University Press:  07 September 2020

Steven M. Stanley*
Affiliation:
Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, Florida32306, U.S.A. E-mail: [email protected]

Abstract

The Strophomenata, which includes two large orders, the Strophomenida and Productida, is the largest group of Paleozoic brachiopods. Nearly all uncemented strophomenatans possessed an unusual concave brachial valve. Most of these have been considered to have lived epifaunally, but had they rested on the seafloor, not only would they have faced intense predation, but their physical instability would have been fatal. I conclude that nearly all strophomenatans, like similar concavo-convex pectinid bivalves, lived infaunally by ejecting water to create a pit into which they descended, to be protected by sediment covering the concave valve. Strophomenatans have been discovered with this sediment preserved in place. If exhumed and turned upside down, a strophomenatan could have righted itself by squirting water. Many productides had anchoring spines, and some had hinge areas with stabilizing flanges. Small spines on the brachial valves of some productides served to trap disguising sediment. Evolutionary loss of hinge teeth within both the Strophomenida and Productida reduced the friction of valve clapping. Partly because of their slender shape, strophomenides were typically more vulnerable to exhumation than productides. Strophomenides also ejected water less effectively than productides and would have been less adept at righting themselves. The virtual disappearance of the strophomenides during the Devonian can be attributed to their vulnerability to intensifying benthic bulldozing and predation. The success of the productides during the late Paleozoic can be attributed to their relatively deep sequestration in the sediment and ability to right themselves and reburrow effectively when exhumed and overturned.

Type
Articles
Copyright
Copyright © 2020 The Paleontological Society. All rights reserved

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Data Repository: https://doi.org/10.5061/dryad.4xgxd255s

References

Literature Cited

Alexander, R. R. 1975. Phenotypic variability of the brachiopod Rafinesquina alternata (Ordovician) and its correlation with the sedimentologic regime. Journal of Paleontology 49:607618.Google Scholar
Alexander, R. R. 1984. Comparative hydrodynamic stability of brachiopod shells on current-scoured arenaceous substrates. Lethaia 17:1732.CrossRefGoogle Scholar
Alexander, R. R. 1986. Life orientation and post-mortem orientation of Chesterian brachiopod shells by paleocurrents. Palaios 1:303311.CrossRefGoogle Scholar
Alvarez, F., and Brunton, C. H. C. 2001. Fundamental differences in external spine growth in brachiopods. In Brunton, C.H.C., Cocks, L. R. M., and Long, S. L., eds. Brachiopods past and present. Systematics Association Special Volume Series 63:108118. Taylor and Francis, London.Google Scholar
Baird, R. H. 1958. On the swimming behavior of escallops (Pecten maximus L.). Proceedings of the Malacological Society of London 33:671.Google Scholar
Beus, S. S. 1984. Fossil associations in the High Tor Limestone (Lower Carboniferous) of South Wales. Journal of Paleontology 58:651667.Google Scholar
Bonuso, N., and Bottjer, D. J.. 2006. A quantitative study of benthic faunal patterns within the Pennsylvanian and Early Permian. Palaios 21:316324.CrossRefGoogle Scholar
Brenchley, P. J., and Harper, D. A. T.. 1998. Palaeoecology: ecosystems, environment and evolution. Chapman and Hall, London.Google Scholar
Bretsky, P. W. Jr. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeography, Palaeoclimatology, Palaeoecology 6:4559.CrossRefGoogle Scholar
Bretsky, P. W., and Bretsky, S. S.. 1975. Succession and repetition of Late Ordovician fossil assemblages from the Nicolet River Valley, Quebec. Paleobiology 1:225237.CrossRefGoogle Scholar
Brett, C. E., and Walker, S. E.. 2002. Predators and predation in Paleozoic marine environments. Paleontological Society Papers 8:93118.CrossRefGoogle Scholar
Brunton, C. H. C. 1972. The shell structure of some chonetacean brachiopods and their ancestors. Bulletin of the British Museum (Natural History) Geology 21:126.Google Scholar
Brunton, C. H. C. 1982. The functional morphology and paleoecology of the Dinantian brachiopod Levitusia. Lethaia 15:149167.CrossRefGoogle Scholar
Brunton, C. H. C., Lazarev, S. S., and Grant, R. E.. 2000. Productida. Pp. 350362in Williams, A. et al. , eds. Brachiopoda 12 (revised). Part H of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Carlson, S. J. 1992. Evolutionary trends in the articulate brachiopod hinge mechanism. Paleobiology 18:344366.CrossRefGoogle Scholar
Carlson, S. J. 2016. The evolution of Brachiopoda. Annual Review of Earth and Planetary Sciences 44:409438.CrossRefGoogle Scholar
Checa, A. G., and Cadee, G. C.. 1997. Hydraulic burrowing in the bivalve Mya arenaria Linnaeus (Myoidea) and associated ligamental adaptations. Journal of Molluscan Studies 63:157171.CrossRefGoogle Scholar
Chen, P. C., Jin, J., and Lenz, A. C.. 2012. Palaeoecology of transported brachiopod assemblages embedded in black shale, Cape Phillips Formation (Silurian), Arctic Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 367–368:104120.CrossRefGoogle Scholar
Chen, Z.-Q., and Liao, Z. T.. 2009. Brachiopod faunas across the Wuchapingian–Changhsingian (Late Permian) boundary at the stratotype section and subsurface of Changxing area, South China. Neues Jarbuch für Geologie und Paläontologie Abhandlung 254:315335.CrossRefGoogle Scholar
Chen, Z.-Q., Shi, G. R., Yang, F.-Q., Gao, Y.-Q., Tong, J., Peng, Y.-Q.. 2006. An ecologically mixed brachiopod fauna from Changhsingian deep-water basin of south China; consequence of end-Permian global warming. Lethaia 39:7990.CrossRefGoogle Scholar
Cocks, L. R., and Jia-Yu, R.. 2000. Strophomenida. Pp. 216422in Williams, A. et al. , eds. Brachiopoda 2 (revised). Part H of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence..Google Scholar
Cohen, K. M., Finney, S. C., Gibard, P. L., and Fan, J-X.. 2013 (updated 2017). The ICS International Chronostratigraphic Chart. Episodes 36:199204.CrossRefGoogle Scholar
Cooper, G. A., and Grant, R. E.. 1975. Permian brachiopods of West Texas, III. Smithsonian Contributions to Paleobiology 19.Google Scholar
Curry, G. B., and Brunton, C. H. C.. 2007. Stratigraphic distribution of brachiopods. Pp. 29012965in Williams, A. et al. , eds. Brachiopoda 6 (revised), Supplement. Part H of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Dattilo, B. F. 2004 A new angle on strophomenid paleoecology: trace-fossil evidence of an escape response for the plectambonitoid brachiopod Sowerbyella rugosa from a tempestite in the Upper Ordovician Kope Formation (Edenian) of northern Kentucky. Palaios 19:332348.2.0.CO;2>CrossRefGoogle Scholar
Dattilo, B. F., Meyer, D. L., Dewing, K., and Gaynor, M. R.. 2009. Escape traces associated with Rafinesquina alternata, an Upper Ordovician strophomenid brachiopod from the Cincinnati region, Ohio, Indiana, and Kentucky. Palaios 24:578590.CrossRefGoogle Scholar
Frisk, A. M., and Harper, D. A. T.. 2013. Late Ordovician brachiopod distribution and ecospace partitioning in the Tvaren Crater system, Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology 369:114124.CrossRefGoogle Scholar
Grant, R. E. 1966. Spine arrangement and life habits of the productoid brachiopod Waagenoconcha. Journal of Paleontology 40:10631069.Google Scholar
Grant, R. E. 1969. A Permian productoid brachiopod: life history. Science 152:660662.CrossRefGoogle Scholar
Grant, R. E. 1981. Living habits of ancient articulate brachiopods. In Dutro, J. T. and Boardman, R. S., eds. Lophophorates: notes for a short course. Studies in Geology 5:127140. University of Tennessee Department of Geological Sciences, Knoxville.Google Scholar
Hallam, A., and Gould, S. J.. 1975. The evolution of British and American Middle and Upper Jurassic Gryphaea: a biometric study. Proceedings of the Royal Society of London B 189:511542.Google Scholar
Harper, E. M. 2003. Assessing the importance of drilling predation over the Paleozoic and Mesozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 201:185198.CrossRefGoogle Scholar
Hess, H. H. 1962. History of ocean basins. Pp. 164199in Engel, A. E. J., James, H. L., and Leonard, B. F., eds. Petrologic studies: a volume in honor of A. F. Buddington. Geological Society of America, New York.Google Scholar
Hubman, B., and Stuttner, T. J.. 2009. Eifelian and Giventian reef pioneer communities: examples from the Graz Paleozoic. Paleozoic Seas Symposium. Berlin Institut für Erdwissenschaft 14:3536.Google Scholar
Jacobs, S. E. 1976. Neochonetes granulifer, an explosive opportunist from the Stull Shale (Upper Pennsylvanian) in southwestern Iowa. Proceedings of the Iowa Academy of Science 83:2022.Google Scholar
Johnsen, S. A. L., Ahmed, M., and Leighton, L. R.. 2013. The effect of spines of a Devonian productide brachiopod on durophagous predation. Palaeogeography, Palaeoclimatology, Palaeoecology 375:337.CrossRefGoogle Scholar
Kammer, T. W. 2006. Gradient analysis of faunal distributions associated with rapid transgression and low accommodation space in a Late Pennsylvanian marine embayment: biofacies of the Ames Member (Glenshaw Formation, Conemaugh Group) in the northern Appalachian Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 231:291314.Google Scholar
Kowalewski, M., Somões, M. G., Torello, F. F., Mello, L. C. H., and Ghilardi, R. P.. 2000. Drill holes in shells of Permian benthic invertebrates. Journal of Paleontology 74:532543.CrossRefGoogle Scholar
Kranz, P. M. 1974. The anastrophic burial of bivalves and its paleoecological significance. Journal of Geology 82:23265.CrossRefGoogle Scholar
Lamont, A. 1934. Lower Paleozoic brachiopods of the Girvan District, with suggestions as to morphology in relation to environment. Annals and Magazine of Natural History, London 10:161184.CrossRefGoogle Scholar
Leighton, L. R. 2000. Environmental distribution of spinose brachiopods from the Devonian of New York: test of the soft substrate hypothesis. Palaios 15:184193.2.0.CO;2>CrossRefGoogle Scholar
Leighton, L. R. 2001. New example of Devonian predatory boreholes and the influence of brachiopod spines on predator success. Palaeogeography, Palaeoclimatology, Palaeoecology 165:5369.CrossRefGoogle Scholar
Leighton, L. R., and Savarese, M.. 1996. Functional and taphonomic implications of Ordovician strophomenid brachiopod valve morphology. Pp. 161168in Copper, P. and Jin, J., eds. Brachiopods. Balkema, Rotterdam.Google Scholar
Lescinsky, H. L. 1995. The life orientation of concavo-convex brachiopods: overturning the paradigm. Paleobiology 21:520551.CrossRefGoogle Scholar
Levinton, J. S. 1970. The paleontological significance of opportunistic species. Lethaia 3:6978.CrossRefGoogle Scholar
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge, Mass.CrossRefGoogle Scholar
McGhee, G. R. 2001. The question of spiral axes and brachiopod shell growth: a comparison of morphometric techniques. Paleobiology 27:716723.2.0.CO;2>CrossRefGoogle Scholar
McKinney, F. K., and Jackson, J. B. C.. 1989. Bryozoan evolution. Unwin Hyman, Boston.Google Scholar
Montana, J., Finn, J. K., and Norman, M. D.. 2015. Liquid sand burrowing and mucus utilization as novel adaptations to a structurally-simple environment in Octopus kaurna Stranks, 1990. Behaviour 152:18711881.CrossRefGoogle Scholar
Muir-Wood, H., and Cooper, G. S.. 1960. Morphology, classification and life habits of the Productoidea (Brachiopoda). Geological Society of America Memoir 81.CrossRefGoogle Scholar
Plotnick, R. E., Dattilo, B. F., Piquard, D., Bauer, J., and Corrie, J.. 2013. The orientation of strophomenid brachiopods on soft substrates. Journal of Paleontology 87:818825.CrossRefGoogle Scholar
Richards, R. P. 1972. Autecology of Richmondian brachiopods (Late Ordovician of Indiana and Ohio). Journal of Paleontology 46:386405.Google Scholar
Richardson, J. R., and Watson, J. E.. 1975. Form and function of the Recent free living brachiopod Magadina cumingi. Paleobiology 1: 379387CrossRefGoogle Scholar
Ross, J. P. 1970. Distribution, paleoecology and correlation of Champlainian Ectoprocta (Bryozoa), New York State, Part III. Journal of Paleontology 44:346382Google Scholar
Rudwick, M. J. S. 1965. Ecology and paleoecology, Pp. H199H214in Williams, A. et al. , eds. Brachiopoda 1. Part H of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Rudwick, M. J. S. 1970. Living and fossil brachiopods. Hutchinson University Library, London.Google Scholar
Savarese, M. 1994. Taphonomic and paleontologic implications of flow-induced forces on convavo-convex articulate brachiopods: an experimental approach. Lethaia 27:301312.CrossRefGoogle Scholar
Savazzi, E. 1990. Shell biomechanics in the bivalve Laternula. Lethaia 23:93–01.CrossRefGoogle Scholar
Seilacher, A. 1969. Origin and diagenesis of the Oriskany Sandstone (Lower Devonian, Appalachians) as reflected in its shell fossils. Pp. 175185in Muller, G. and Friedman, G. M., eds. Recent developments in carbonate sedimentology in Central Europe. Springer, Berlin.Google Scholar
Seilacher, A. 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology 27:207237.Google Scholar
Shino, Y., and Suzuki, Y.. 2011. The ideal hydrodynamic form of the concavo-convex productide brachiopod shell. Lethaia 44:329343.CrossRefGoogle Scholar
Signor, P. W., and Brett, C. E.. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.CrossRefGoogle Scholar
Simanauskas, T., and Cisterna, C.. 2000. A palaeo-opportunistic brachiopod from the Early Permian of Argentina. Alcheringa 24:4553.CrossRefGoogle Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia. Geological Society of America Memoir 125.CrossRefGoogle Scholar
Stanley, S. M. 1974. What has happened to the articulate brachiopods? Geological Society of America Abstracts with Programs 6:966967.Google Scholar
Stanley, S. M. 1977a. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology 20:869899.Google Scholar
Stanley, S. M. 1977b. Trends, rates, and patterns of evolution in the Bivalvia. Pp. 209250in Hallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Stanley, S. M. 1981. Infaunal survival: alternative functions of shell ornamentation in the Bivalvia (Mollusca). Paleobiology 7:384393.CrossRefGoogle Scholar
Stanley, S. M. 2015. Functional shell morphology of non-cementing Bivalvia. Part N (revised), vol. 1, chap. 5: Bivalvia. Treatise Online 71:1–46.Google Scholar
Stenzel, H. B. 1971. Oysters. Bivalvia 3. Part N of Moore, R. C. and Teichert, C., eds. Treatise on invertebrate paleontology. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Tebble, N. 1966. British bivalve seashells. British Museum of Natural History, London.Google Scholar
Telford, M., Mooi, R., and Harold, A. S.. 1987. Feeding activities of Clypeaster (Echinoides, Clypeasteroida): further evidence of clypeasteroid niche partitioning. Biological Bulletin 172:324336.CrossRefGoogle Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum Press, New York.CrossRefGoogle Scholar
Trueman, E. R. 1953. Observations on certain mechanical properties of the ligament of Pecten. Journal of Experimental Biology 30:45467.Google Scholar
Trueman, E. R. 1966. Fluid dynamics of burrowing. Science 152:523525.CrossRefGoogle Scholar
Trueman, E. R., Brand, A. R., and Davis, P.. 1966. The effect of substrata and shell shape on the burrowing of some common bivalves. Proceedings of the Malacological Society of London 37:97109.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:24258.CrossRefGoogle Scholar
Walker, K. R., and Laporte, L. F.. 1970. Congruent fossil communities from Ordovician and Devonian carbonates of New York. Journal of Paleontology 44:928944.Google Scholar
Waller, T. R. 1976. The behavior and tentacle morphology of pteriomorphian bivalves: a motion-picture study. Bulletin of the American Malacological Union 1975:713.Google Scholar
Watkins, R. 2000. Silurian reef-dwelling brachiopods and their ecologic implications. Palaios 15:112119.2.0.CO;2>CrossRefGoogle Scholar
Watkins, R., Coorough, P. J., and Mayer, P. S.. 2000. The Silurian Dicoelosia communities: temporal stability within an ecologic evolutionary unit. Palaeogeography, Palaeoclimatology, Palaeoecology 162:225237.CrossRefGoogle Scholar
Wiedman, L. A. 1985. Community paleoecological study of the Silica Shale equivalent of northeastern Indiana. Journal of Paleontology 59:160182.Google Scholar
Wilkens, J. L. 1978a. Adductor muscles in brachiopods: activation and contraction. Canadian Journal of Zoology 56:315323.CrossRefGoogle Scholar
Wilkens, J. L. 1978b. Diductor muscles of brachiopods: activation and very slow contraction. Canadian Journal of Zoology 56:324332.CrossRefGoogle Scholar
Williams, A. 1953. North American and European stropheodontids: their morphology and systematics. Geological Society of America Memoir 56.CrossRefGoogle Scholar
Williams, A. 1997. Shell structure. Pp. 267320in Williams, A. et al. , eds. Brachiopoda 1 (revised). Part H of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., and Rowell, A. J.. 1965. Evolution and phylogeny. Pp. H164H199in Williams, A. et al. , eds. Brachiopoda 1. Part H of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., Brunton, C. H. C., and McKinnon, D. I.. 1997. Morphology. Pp. 321422in Williams, A. et al. , eds. Brachiopoda 1 (revised). Part H of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., Brunton, C. H. C., and Cox, L. R. M.. 2000. Strophomenida. Pp. 215423in Williams, A. et al. , eds. Brachiopoda 2 (revised). Part H of R. C. Moore and C. Teichert, eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Young, D. K., Buzas, M. A., and Young, M. W.. 1976. A field experimental study of predation. Journal of Marine Research 34:577592.Google Scholar
Ziegler, A. M., Cocks, L. R. M., and Bambach, R. K.. 1968. The composition and structure of lower Silurian marine communities. Lethaia 1:127.CrossRefGoogle Scholar