Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T20:21:30.108Z Has data issue: false hasContentIssue false

Evidence for extinction selectivity throughout the marine invertebrate fossil record

Published online by Cambridge University Press:  08 April 2016

G. Alex Janevski
Affiliation:
Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109-1079. E-mail: [email protected]
Tomasz K. Baumiller
Affiliation:
Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109-1079. E-mail: [email protected]

Abstract

The fossil record has been used to show that in some geologic intervals certain traits of taxa may increase their survivability, and therefore that the risk of extinction is not randomly distributed among taxa. It has also been suggested that traits that buffer against extinction in background times do not confer the same resistance during mass extinction events. An open question is whether at any time in geologic history extinction probabilities were randomly distributed among taxa. Here we use a method for detecting random extinction to demonstrate that during both background and mass extinction times, extinction of marine invertebrate genera has been nonrandom with respect to species richness categories of genera. A possible cause for this nonrandom extinction is selective clustering of extinctions in genera consisting of species which possess extinction-biasing traits. Other potential causes considered here include geographic selectivity, increased extinction susceptibility for species in species-rich genera, or biases related to taxonomic practice and/or sampling heterogeneity. An important theoretical result is that extinction selectivity at the species level cannot be smoothly extrapolated upward to genera; the appearance of random genus extinction with respect to species richness of genera results when extinction has been highly selective at the species level.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fursich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous Tertiary extinction. Science 208:10951108.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.Google Scholar
Eble, G. J. 1999. On the dual nature of chance in evolutionary biology and paleobiology. Paleobiology 25:7587.Google Scholar
Foote, M. 1996. Perspective: evolutionary patterns in the fossil record. Evolution 50:111.CrossRefGoogle ScholarPubMed
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3:2340.CrossRefGoogle Scholar
Gradstein, F. M., and Ogg, J. G. 2004. Geologic time scale 2004—why, how, and where next! Lethaia 37:175181.CrossRefGoogle Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. In Vrba, E. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency. Paleobiology 31(Suppl. to No. 2):192210.Google Scholar
Kier, P. M., and Lawson, M. H. 1978. Index of living and fossil echinoids, 1924–1970. Smithsonian Contributions to Paleobiology 34.Google Scholar
Kitchell, J. A., Clark, D. L., and Gombos, A. M. Jr. 1986. Biological selectivity of extinction: a link between background and mass extinction. Palaios 1:504511.Google Scholar
Leighton, L. R., and Schneider, C. L. 2008. Taxon characteristics that promote survivorship through the Permian–Triassic interval: transition from the Paleozoic to the Mesozoic brachiopod fauna. Paleobiology 34:6578.Google Scholar
Lockwood, J. L., Russell, G. J., Gittleman, J. L., Daehler, C. C., McKinney, M. K., and Purvis, A. 2002. A metric for analyzing taxonomic patterns of extinction risk. Conservation Biology 16:11371142.Google Scholar
MacLeod, N., Rawson, P. F., Forney, P. L., Banner, F. T., Boudagher-Fadel, M. K., Bown, P. R., Burnett, J. A., Chambers, P., Culver, S., Evans, S. E., Jeffery, C., Kaminski, M. A., Lord, A. R., Milner, A. C., Milner, A. R., Morris, N., Owen, E., Rosen, B. R., Smith, A. B., Taylor, P. D., Urquhart, E., and Young, J. R. The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, London 154:265292.Google Scholar
McKinney, M. L. 1995. Extinction selectivity among lower taxa: gradational patterns and rarefaction error in extinction estimates. Paleobiology 21:300313.Google Scholar
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.CrossRefGoogle ScholarPubMed
Peters, S. E. 2008. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626629.CrossRefGoogle ScholarPubMed
Plotnick, R. E., and Wagner, P. J. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology 32:126146.Google Scholar
Purvis, A., Agapow, P. M., Gittleman, J. L., and Mace, G. M. 2000. Nonrandom extinction and the loss of evolutionary history. Science 288:328330.CrossRefGoogle ScholarPubMed
R Development Core Team. 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Raup, D. M. 1978. Approaches to the extinction problem. Journal of Paleontology 52:517523.Google Scholar
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206:217218.Google Scholar
Raup, D. M. 1991. Extinction: bad genes or bad luck? Norton, New York.Google Scholar
Raup, D. M. 1994. The role of extinction in evolution. Proceedings of the National Academy of Sciences USA 91:67586763.CrossRefGoogle ScholarPubMed
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.Google Scholar
Raup, D. M., and Jablonski, D. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.Google Scholar
Schopf, T. J. M. 1979. Evolving paleontological views on deterministic and stochastic approaches. Paleobiology 5:337352.Google Scholar
Smith, J. T., and Roy, K. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32:408416.Google Scholar
Thomas, J. A., Telfer, M. G., Roy, D. B., Preston, C. D., Greenwood, J. J., Asher, J., Fox, R., Clarke, R. T., and Lawton, J. H. 2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303:18791881.Google Scholar
Twitchett, R. J. 2002. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology 232:190213.CrossRefGoogle Scholar
Wang, S. C. 2003. On the continuity of background and mass extinction. Paleobiology 29:455467.Google Scholar