Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T20:33:47.973Z Has data issue: false hasContentIssue false

Environmental Stability and Species Proliferation in Late Cambrian Trilobite Faunas: A Test of the Niche-Variation Hypothesis

Published online by Cambridge University Press:  25 May 2016

Jean H. Ashton
Affiliation:
Sun Oil Company, Midland, Texas 79701 Department of Geology and Museum of Invertebrate Paleontology, University of Kansas, Lawrence, Kansas 66044
A. J. Rowell
Affiliation:
Sun Oil Company, Midland, Texas 79701 Department of Geology and Museum of Invertebrate Paleontology, University of Kansas, Lawrence, Kansas 66044

Abstract

The “niche-variation” model predicts that increase in environmental stability should be accompanied by increase in homozygosity and reduction in morphological variability. All Late Cambrian trilobite biomeres show an increase in regional species diversity from low in the biomere toward the top. This change in diversity is believed to reflect increasing environmental stability and consequently affords the opportunity to indirectly test the “niche-variation” hypothesis in a paleontological context. Measurements were made of eight cranidial features of samples of 17 species populations from the Pterocephaliid Biomere of the Great Basin. Coefficients of variation and a multivariate analog of them failed to reveal a relationship between morphological variability and species diversity. Consideration of these data together with contradictory, but limited, informaton for other organisms suggests that the predicted decrease in genetic variability may either be absent or be readily masked in naturally occurring populations, which typically retain a high degree of genetic polymorphism. If heterozygosity is common, it would appear that accidents of geography, rather than the genetic consequences of stable or unstable environments, are among the primary factors controlling the probability of speciation.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bretsky, P. W. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeog. Palaeoclim. Palaeoecol. 6:4559.Google Scholar
Bretsky, P. W., and Lorenz, D. M. 1970a. Adaptive response to environmental stability: a unifying concept in paleoecology. North Am. Paleont. Convention, Chicago, 1969, Proc. E:522550.Google Scholar
Bretsky, P. W., and Lorenz, D. M. 1970b. An essay on genetic-adaptive strategies and mass extinctions. Geol. Soc. Amer. Bull. 81:24492456.Google Scholar
Dayton, P. K., and Hessler, R. R. 1972. Role of biological disturbance in maintaining diversity in the deep sea. Deep-sea Res. 19:199208.Google Scholar
Dempster, A. P. 1969. Elements of continuous multivariate analysis. Addison-Wesley Publishing Co. 388 pp.Google Scholar
Ehrlich, P. R., and Raven, P. H. 1969. Differentiation of populations. Science. 165:12281232.CrossRefGoogle ScholarPubMed
Eldredge, N. 1974. Stability, diversity, and speciation in Paleozoic epeiric seas. J. Paleontol. 48:541548.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. In, Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper and Co., San Francisco. pp. 82115.Google Scholar
Gooch, J. L., and Schopf, T. J. M. 1973. Genetic variability in the deep sea: relation to environmental variability. Evolution. 26:545552.Google Scholar
Gould, S. J. 1974. This view of life: an unsung single-celled hero. Nat. Hist. 83:3342.Google Scholar
Jackson, J. B. C. 1974. Biogeographical consequences of eurytopy and stenotopy among marine bivalves and their evolutionary significance. Amer. Natur. 108:541560.Google Scholar
Johnson, G. B. 1973. Relationship of enzyme polymorphism to species diversity. Nature. 242:193194.Google Scholar
Koehn, R. K., and Mitton, J. B. 1972. Population genetics of marine pelecypods. I. Ecological heterogeneity and evolutionary strategy at an enzyme locus. Amer. Natur. 106:4756.Google Scholar
Levine, L., and Beardmore, J. A. 1959. A study of an experimental Drosophila population in equilibrium. Amer. Natur. 93:3540.Google Scholar
Levinton, J. S. 1970. The paleoecological significance of opportunistic species. Lethaia. 3:6978.CrossRefGoogle Scholar
Levinton, J. S. 1973a. Trophic group and evolution. Geol. Soc. Amer., Abst. prog. 5:712713.Google Scholar
Levinton, J. S. 1973b. Genetic variation in a gradient of environmental variability: marine Bivalvia (Mollusca). Science. 180:7576.Google Scholar
Levins, R. 1966. The strategy of model building in population biology. Amer. Scientist 54:421431.Google Scholar
Levins, R. 1968. Evolution in changing environments. Monographs in population biology. 2. Princeton University Press. 120 pp.Google Scholar
Lochman-Balk, C. 1971. The Cambrian of the craton of the United States. In, Holland, C. H., ed. Lower Palaeozoic rocks of the world. Vol. 1. Cambrian of the New World. Wiley-Interscience. pp. 79167.Google Scholar
Lochman-Balk, C. 1974. Late Dresbachian (Late Cambrian) biostratigraphy of North America. Geol. Soc. Amer. Bull. 85:135140.Google Scholar
Longacre, S. A. 1970. Trilobites of the Upper Cambrian Ptychaspid Biomere, Wilberns Formation, Central Texas. Paleontol. Soc., Mem. 4 (J. Paleont. 44: No. 1 Supplement), 70 pp.Google Scholar
MacArthur, R. H. 1972. Geographical ecology: Patterns in the distribution of species. Harper and Row, 269 pp.Google Scholar
Palmer, A. R. 1965. Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. Geol. Surv. Prof. Paper 493:1105.Google Scholar
Powell, J. R. 1971. Genetic polymorphisms in varied environments. Science. 174:10351036.Google Scholar
Pianka, E. R. 1966. Latitudinal gradients in species diversity: a review of concepts. Amer. Natur. 100:3346.Google Scholar
Rothstein, S. I. 1973. The niche-variation model—is it valid? Amer. Natur. 107:598620.CrossRefGoogle Scholar
Sabath, M. D. 1974. Niche breadth and genetic variability in sympatric natural populations of Drosophilid flies. Amer. Natur. 108:533540.Google Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. Amer. Natur. 102:243282.Google Scholar
Sanders, H. L. 1969. Benthic marine diversity and the stability-time hypothesis. Brookhaven Sym. Biol. 22:7180.Google Scholar
Schopf, T. J. M. 1974a. Survey of genetic differentiation in a coastal zone invertebrate: the ectoproct Schizoporella errata. Biol. Bull. 145:7887.Google Scholar
Schopf, T. J. M. 1974b. Permo-Triassic extinctions: relation to sea-floor spreading. J. Geol. 82:129143.Google Scholar
Simberloff, D. S. 1974. Permo-Triassic extinctions: effects of area on biotic equilibruim. J. Geol. 82:267274.Google Scholar
Slobodkin, L. B., and Sanders, H. L. 1969. On the contribution of environmental predictability to species diversity in Diversity and Stability in ecological systems. Brookhaven Sym. Biol. 22:8295.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1969. Biometry. W. H. Freeman and Co. 776 pp.Google Scholar
Somero, G. N., and Soulé, M. 1974. Genetic variation in marine fishes as a test of the niche-variation hypothesis. Nature. 249:670672.Google Scholar
Soulé, M. 1972. Phenetics of natural populations. III. Variation in insular populations of a lizard. Amer. Natur. 106:429446.Google Scholar
Soulé, M., Yang, S. Y., Weiler, M. G. W., and Gorman, G. C. 1973. Island Lizards: the genetic-phenetic variation correlation. Nature. 242:191193.Google Scholar
Staiger, H. 1957. Genetical and morphological variation in Purpura lapillus with respect to local and regional differentiation of population groups. Ann. Biologique 3rd Ser. 33:251258.Google Scholar
Stanley, S. M. 1973. An ecological theory for the sudden origin of multicellular life in the Late Precambrian. Nat. Acad. Sci. Proc. 70:14861489.Google Scholar
Stitt, J. H. 1971a. Repeating evolutionary pattern in Late Cambrian trilobite biomeres. J. Paleontol. 45:178181.Google Scholar
Stitt, J. H. 1971b. Cambrian-Ordovician Trilobites Western Arbuckle Mountains. Oklahoma Geol. Surv. Bull. 110. 83.Google Scholar
Templeton, A. R., and Rothman, E. D. 1974. Evolution in heterogeneous environments. Amer. Natur. 108:409428.Google Scholar
Thayer, C. W. 1973. Taxonomic and environmental stability in the Paleozoic. Science. 182:12421243.Google Scholar
Valentine, J. W. 1968. The evolution of ecological units above the population level. J. Paleontol. 42:253267.Google Scholar
Valentine, J. W. 1971. Resource supply and species diversity patterns. Lethaia. 4:5161.Google Scholar
Valentine, J. W. 1972. Conceptual models of ecosystem evolution. In, Schopf, T. J. M., ed. Models in Paleobiology. Freeman and Co. pp. 192215.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice-Hall Inc. 511 pp.Google Scholar
Valentine, J. W., Hedgecock, D., Zumwalt, G. S., and Ayala, F. J. 1973. Mass extinctions and genetic polymorphism in the “Killer Clam,” Tridacna. Geol. Soc. Amer. Bull. 84:34113414.Google Scholar
Van Valen, L. 1965. Morphological variation and width of ecological niche. Amer. Natur. 99:377390.Google Scholar