Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:18:55.722Z Has data issue: false hasContentIssue false

Diversity and tectonics: predictions from neutral theory

Published online by Cambridge University Press:  26 March 2018

Steven M. Holland*
Affiliation:
Department of Geology, University of Georgia, Athens, Georgia 30602-2501, U.S.A. E-mail: [email protected]

Abstract

Numerical simulations of neutral metacommunities are used here to predict the effects of growth and shrinkage of metacommunities, as well as their separation and merging caused by continental collision and rifting and their secondary eustatic effects. Although growth and shrinkage of metacommunities predictably change diversity, separating and merging metacommunities have counterintuitive effects. Separating and merging metacommunities change diversity within the individual areas, especially so for smaller areas, but they cause no change in total diversity of the system, contrary to previous predictions. The response times of metacommunities are likely to be geologically undetectable except for enormously large systems. These models can be used to predict the plate-tectonic effects on the diversity of terrestrial, coastal-marine, deep-marine, and oceanic-island systems. Of these, global and regional coastal-marine systems are the most acutely sensitive to the changes in area and fragmentation caused by plate tectonics. Oceanic-island systems also experience global and regional changes in diversity during supercontinent breakup and assembly, with the global effects driven by the changing length of volcanic arcs, and the regional effects also driven by secondary eustatic changes in shallow-marine area. Although individual terrestrial provinces or continents may experience substantial changes in diversity from rifting and collision, global terrestrial diversity should be unchanged except for the relatively modest contributions caused by the secondary eustatic effects on land area. These changes in diversity may be reinforced or counteracted by the changing latitudinal position of metacommunities.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Algeo, T. J., and Seslavinsky, K. B.. 1995a. The Paleozoic world: continental flooding, hypsometry, and sealevel. American Journal of Science 295:787822.CrossRefGoogle Scholar
Algeo, T. J., and Seslavinsky, K. B.. 1995b. Reconstructing eustatic and epeirogenic trends from Paleozoic continental flooding records. Pp. 209246 in B. U. Haq, ed. Sequence stratigraphy and depositional response to eustatic, tectonic and climatic forcing. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Algeo, T., and Wilkinson, B.. 1991. Modern and ancient continental hypsometries. Journal of the Geological Society, London 148:643653.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nurnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L., Hopkins, S. S. B., Jezkova, T., Matocq, M. D., Matzke, N., McGuire, J. L., Mulch, A., Riddle, B. R., Roth, V. L., Samuels, J. X., Strömberg, C. A. E., and Yanites, B. J.. 2017. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends in Ecology and Evolution 32:211226.Google Scholar
Barrett, P. M., McGowan, A. J., and Page, V.. 2017. Dinosaur diversity and the rock record. Proceedings of the Royal Society of London B 276(1667). doi:10.1098/rspb.2009.0352.Google Scholar
Benson, R. B. J., and Upchurch, P.. 2013. Diversity trends in the establishment of terrestrial vertebrate ecosystems: interactions between spatial and temporal sampling biases. Geology 41:4346.CrossRefGoogle Scholar
Benton, M. J. 2010. The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society of London B 365:36673679.Google Scholar
Bird, P. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems 4:152.Google Scholar
Cao, W., Zahirovic, S., Flament, N., Williams, S., Golonka, J., and Müller, R. D.. 2017. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14:54255439.CrossRefGoogle Scholar
Charig, A. J. 1973. Kurtén’s theory of ordinal variety and the number of continents. Pp. 229246 in D. H. Tarling, and S. K. Runcorn, eds. Implications of continental drift to the earth sciences vol. 1. Academic Press, London.Google Scholar
Cogné, J. P., and Humler, E.. 2008. Global scale patterns of continental fragmentation: Wilson’s cycles as a constraint for long-term sea-level changes. Earth and Planetary Science Letters 273:251259.Google Scholar
Fischer, A. G. 1981. Climatic oscillations in the biosphere. Pp. 103131 in M. H. Nitecki, ed. Biotic crises in ecological and evolutionary time. Academic Press, New York.Google Scholar
Fischer, A. G. 1984. The two Phanerozoic supercycles. Pp. 129150 in W. A. Berggren, and J. A. van Couvering, eds. Catastrophes in earth history: the new uniformitarianism. Princeton University Press, Princeton, N. J.Google Scholar
Flessa, K. W. 1975. Continental drift and mammalian diversity. Paleobiology 1:189194.Google Scholar
Flessa, K. W., and Imbrie, J.. 1973. Evolutionary pulsations: evidence from Phanerozoic diversity patterns. Pp. 247285 in D. H. Tarling, and S. K. Runcorn, eds. Implications of continental drift to the earth sciences, vol. 1. Academic Press, London.Google Scholar
Flessa, K., and Sepkoski, J. J. Jr. 1978. On the relationship between Phanerozoic diversity and changes in habitable area. Paleobiology 4:359366.Google Scholar
Foote, M. 2007. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33:517529.Google Scholar
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, L.. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:11311134.Google Scholar
Gurnis, M. 1993. Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs. Nature 364:589593.Google Scholar
Hallam, A. 1974. Changing patterns of provinciality and diversity of fossil animals in relation to plate tectonics. Journal of Biogeography 1:213225.Google Scholar
Hankin, R. 2007. Introducing untb, an R package for simulating ecological drift under the unified neutral theory of biodiversity. Journal of Statistical Software 22:115.Google Scholar
Harnik, P. G. 2009. Unveiling rare diversity by integrating museum, literature, and field data. Paleobiology 35:190208.Google Scholar
Harrison, C. G. A. 1988. Eustasy and epeirogeny of continents on time scales between about 1 and 100 m.y. Paleoceanography 3:671684.Google Scholar
Heller, P. L., and Angevine, C. L.. 1985. Sea-level cycles during the growth of Atlantic-type oceans. Earth and Planetary Science Letters 75:417426.Google Scholar
Holland, S. M. 2010. Additive diversity partitioning in palaeobiology: revisiting Sepkoski’s question. Palaeontology 53:12371254.Google Scholar
Holland, S. M. 2012. Sea level change and the area of shallow-marine habitat: implications for marine biodiversity. Paleobiology 38:205217.CrossRefGoogle Scholar
Holland, S. M. 2016. The non-uniformity of fossil preservation. Philosophical Transactions of the Royal Society of London B 371:20150130–11.Google Scholar
Holland, S. M., and Sclafani, J.. 2015. Phanerozoic diversity and neutral theory. Paleobiology 41:369376.CrossRefGoogle Scholar
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N. J.Google Scholar
Hubbell, S. P. 2006. Neutral theory and the evolution of ecological equivalence. Ecology 87:13871398.Google Scholar
Ingalls, M., Rowley, D. B., Currie, B., and Colman, A. S.. 2016. Large-scale subduction of continental crust implied by India–Asia mass-balance calculation. Nature Geoscience 9:848853.Google Scholar
Jablonski, D. 1985. Marine regressions and mass extinctions: a test using the modern biota. Pp. 335354 in J. W. Valentine, ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, N. J.Google Scholar
Jablonski, D., Flessa, K., and Valentine, J. W.. 1985. Biogeography and paleobiology. Paleobiology 11:7590.Google Scholar
Jordan, S. M. R., Barraclough, T. G., and Rosindell, J.. 2016. Quantifying the effects of the break up of Pangaea on global terrestrial diversification with neutral theory. Philosophical Transactions of the Royal Society of London B 371:20150221.CrossRefGoogle ScholarPubMed
Kurtén, B. 1967. Continental drift and the paleogeography of reptiles and mammals. Societas Scientiarium Fennica, Commentationes Biologicae 31:18.Google Scholar
Kurtén, B. 1969. Continental drift and evolution. Scientific American 220:5464.Google Scholar
Lieberman, B. S. 2000. Vicariance, dispersal, and plate tectonics. Topics in Geobiology 16:7392.Google Scholar
Liow, L. H., and Stenseth, N. C.. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:2745–2752.Google Scholar
Miller, A. I. 1997. Comparative diversification dynamics among palaeoecontinents during the Ordovician Radiation. Geobios 20:397406.Google Scholar
Mouquet, N., Matthiessen, B., Miller, T., and Gonzalez, A.. 2011. Extinction debt in source-sink metacommunities. PLoS ONE 6:e17567.Google Scholar
Nance, R. D., Murphy, J. B., and Santosh, M.. 2014. The supercontinent cycle: a retrospective essay. Gondwana Research 25:429.Google Scholar
Preston, F. W. 1948. The commonness, and rarity, of species. Ecology 29:254283.CrossRefGoogle Scholar
Preston, F. W. 1960. Time and space and the variation of species. Ecology 41:611627.Google Scholar
Raup, D. M., and Stanley, S. M.. 1978. Principles of paleontology, 2 nd ed. Freeman, San Francisco.Google Scholar
R Core Team 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rich, J. E., Johnson, G. L., Jones, J. E., and Campsi, J.. 1986. A significant correlation between fluctuations in seafloor spreading rates and evolutionary pulsations. Paleoceanography 1:8595.CrossRefGoogle Scholar
Rijsdijk, K. F., Hengl, T., Norder, S. J., Otto, R., Emerson, B. C., Ávila, S. P., López, H., van Loon, E. E., Tjørve, E., and Fernández-Palacios, J. M.. 2014. Quantifying surface-area changes of volcanic islands driven by Pleistocene sea-level cycles: biogeographical implications for the Macaronesian archipelagos. Journal of Biogeography 41:12421254.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge, U.K.Google Scholar
Rosindell, J., Hubbell, S. P., and Etienne, R. S.. 2011. The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology and Evolution 26:340348.Google Scholar
Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J., and Etienne, R. S.. 2012. The case for ecological neutral theory. Trends in Ecology and Evolution 27:204209.Google Scholar
Rowley, D. B. 2002. Rate of plate creation and destruction: 180 Ma to present. Geological Society of America Bulletin 114:927933.Google Scholar
Rowley, D. B. 2017. Earth’s constant mean elevation: implication for long-term sea level controlled by oceanic lithosphere dynamics in a Pitman world. Journal of Geology 125:141153.Google Scholar
Sepkoski, J. J. Jr. 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology 14:221234.Google Scholar
Shmida, A., and Wilson, M. V.. 1985. Biological determinants of species diversity. Journal of Biogeography 12:120.Google Scholar
Smith, P. L. 1988. Paleobiogeography and plate tectonics. Geoscience Canada 15:261279.Google Scholar
Stanley, S. M. 1979. Macroevolution, pattern and process. Freeman, San Francisco.Google Scholar
Tiffney, B. H., and Niklas, K. J.. 1990. Continental area, dispersion, latitudinal distribution, and topographic variety: a test of correlation with terrestrial plant diversity. Pp. 76102 in R. M. Ross, and W. D. Allmon, eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Valentine, J. W. 1971. Plate tectonics and shallow marine diversity and endemism, an actualistic model. Systematic Zoology 20:253264.CrossRefGoogle Scholar
Valentine, J. W., and Jablonski, D.. 1991. Biotic effects of sea level change: the Pleistocene test. Journal of Geophysical Research 96:68736878.Google Scholar
Valentine, J. W., and Jablonski, D.. 2010. Origins of marine patterns of biodiversity: some correlates and applications. Palaeontology 53:12031210.Google Scholar
Valentine, J. W., and Moores, E. M.. 1972. Global tectonics and the fossil record. Journal of Geology 80:167184.Google Scholar
Valentine, J. W., Foin, T., and Peart, D.. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology 4:5566.Google Scholar
Wall, P. D., Ivany, L. C., and Wilkinson, B. H.. 2011. Impact of outcrop area on estimates of Phanerozoic terrestrial biodiversity trends. In A. J. McGowan, and A. B. Smith, eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publications 358:5362.Google Scholar
Wyatt, A. 1987. Shallow water areas in space and time. Journal of the Geological Society, London 144:115120.Google Scholar
Zaffos, A., Finnegan, S., and Peters, S. E.. 2017. Plate tectonic regulation of global marine animal diversity. Proceedings of the National Academy of Sciences USA 114:5653–5658.Google Scholar