Hostname: page-component-5cf477f64f-h6p2m Total loading time: 0 Render date: 2025-04-06T00:48:33.042Z Has data issue: false hasContentIssue false

Disparate life histories in coeval Triassic cynodonts and their implications for the evolution of mammalian life histories

Published online by Cambridge University Press:  24 March 2025

Zoe T. Kulik*
Affiliation:
American Museum of Natural History, Division of Paleontology, New York, New York 10024, U.S.A. Field Museum of Natural History, Negaunee Integrative Research Center, Chicago, Illinois 60605, U.S.A.
*
Corresponding author: Zoe T. Kulik; Email: [email protected]

Abstract

The evolution of mammalian innovations like elevated growth rates, endothermy, and live birth has been the subject of paleobiological work for decades. Bone histology provides one of the best lines of evidence for assessing growth rates and life-history traits in the fossil record. However, little ontogenetic information is available for nonmammalian cynodonts, the stock lineage that eventually gave rise to mammals. Here, I report the bone histology of two traversodontid cynodonts from the Triassic Manda Formation of Tanzania. Using two femoral size series, I correlate bone tissue composition and limb size in Scalenodon angustifrons and Luangwa drysdalli. Fifteen individuals were analyzed from seven penecontemporaneous localities to assess intraspecific histovariation within traversodontid ontogenetic development for the first time. My results show that Scalenodon and Luangwa have disparate life histories despite being similarly sized contemporaries. Luangwa is characterized by parallel-fibered bone that transitions to woven-parallel bone early in ontogeny, interpreted as a growth spurt. This increase in growth rate is seen in small- and middle-sized individuals but is resorbed and remodeled in the largest, skeletally mature individual. By contrast, Scalenodon is characterized by woven-parallel tissue in early ontogeny. However, femur size is not correlated with changes in bone tissue composition, as multiple individuals show peripheral slower-growing tissue regardless of size, interpreted as highly developmentally plastic growth. Together, these results demonstrate that coeval members of Traversodontidae show disparate life histories. The underlying mechanisms to explain different life histories in these taxa are likely due to (1) intrinsic differences in growth rates and (2) varying degrees of developmentally flexible growth. The implication of this work is that intraspecific variation in growth dynamics may be more widespread than currently understood in cynodonts and that size is not a good indicator of maturity for some species.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Handling Editor: Nadia Fröbisch

References

Literature Cited

Abdala, F. 2007. Redescription of Platycraniellus elegans (Therapsida, Cynodontia) from the Lower Triassic of South Africa, and the cladistic relationships of Eutheriodonts. Palaeontology 50:591618.CrossRefGoogle Scholar
Abdala, F. 2021. Permo-Jurassic cynodonts. The early road to mammalness. Pp. 206226 in Alderton, D. and Elias, S. A., eds. Encyclopedia of geology, 2nd ed. Academic Press, Oxford.Google Scholar
Abdala, F., and Gaetano, L. C.. 2018. The Late Triassic record of cynodonts: time of innovations in the mammalian lineage. Pp. 407445 in Tanner, L. H., ed. The Late Triassic world: Earth in a time of transition. Springer, Cham, Switzerland.Google Scholar
Abdala, F., and Ribeiro, A. M.. 2010. Distribution and diversity patterns of Triassic cynodonts (Therapsida, Cynodontia) in Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 286:202217.CrossRefGoogle Scholar
Abdala, F., and Sa-Teixeira, A. M.. 2004. A traversodontid cynodont of African affinity in the South American TriassicPalaeontologia Africana 40:1122.Google Scholar
Abdala, F., and Smith, R. M. H.. 2009. A Middle Triassic cynodont fauna from Namibia and its implications for the biogeography of Gondwana. Journal of Vertebrate Paleontology 29:837851.CrossRefGoogle Scholar
Amprino, R. 1947. La structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroissement. Archives de Biologie 58:317330.Google Scholar
Angielczyk, K. D., and Kammerer, C. F.. 2018. Non-Mammalian synapsids: the deep roots of the mammalian family tree. Pp. 117198 in Zachos, F. and Asher, R., eds. Mammalian evolution, diversity and systematics. De Gruyter, Berlin.CrossRefGoogle Scholar
Barrett, P. M., Nesbitt, S. J., and Peecook, B. R.. 2015. A large-bodied silesaurid from the Lifua Member of the Manda beds (Middle Triassic) of Tanzania and its implications for body-size evolution in Dinosauromorpha. Gondwana Research 27:925931.CrossRefGoogle Scholar
Barta, D. E., Griffin, C. T., and Norell, M. A.. 2022. Osteohistology of a Triassic dinosaur population reveals highly variable growth trajectories typified early dinosaur ontogeny. Scientific Reports 12:17321.CrossRefGoogle ScholarPubMed
Botha, J., and Chinsamy, A.. 2000. Growth patterns deduced from the bone histology of the cynodonts Diademodon and Cynognathus. Journal of Vertebrate Paleontology 20:705711.CrossRefGoogle Scholar
Botha, J., and Chinsamy, A.. 2004. Growth and life habits of the Triassic cynodont Trirachodon, inferred from bone histology. Acta Palaeontologica Polonica 49:619627Google Scholar
Botha, J., and Chinsamy, A.. 2005. Growth patterns of Thrinaxodon liorhinus, a non-mammalian cynodont from the Lower Triassic of South Africa. Palaeontology 48:385394.CrossRefGoogle Scholar
Botha, J., and Huttenlocker, A. K.. 2021. Nonmammalian synapsids. Pp. 550563 in de Buffrénil, V., de Ricqlès, A. J., Zylberberg, L., and Padian, K., eds. Vertebrate skeletal histology and paleohistology. CRC Press, Taylor & Francis, Boca Raton, Fla.CrossRefGoogle Scholar
Botha, J., Abdala, F., and Smith, R.. 2007. The oldest cynodont: new clues on the origin and early diversification of the Cynodontia. Zoological Journal of the Linnean Society 149:477492.CrossRefGoogle Scholar
Botha-Brink, J., Abdala, F., and Chinsamy, A.. 2012. The radiation and osteohistology of nonmammaliaform cynodonts. Pp. 223246 in Chinsamy-Turan, A., ed. Forerunners of mammals: radiation, histology, biology. Indiana University Press, Bloomington.Google Scholar
Botha-Brink, J., Soares, M. Bento, and Martinelli, A. G.. 2018. Osteohistology of Late Triassic prozostrodontian cynodonts from Brazil. PeerJ 6:e5029.CrossRefGoogle ScholarPubMed
Brink, A. S. 1963. Two cynodonts from the Ntawere Formation in the Luangwa valley of Northern Rhodesia.Google Scholar
Buffrénil, V. de, and Quilhac, A.. 2021. Bone tissue types: a brief account of currently used categories. Pp. 147182 in de Buffrénil, V., de Ricqlès, A. J., Padian, K., and Zylberberg, L., eds. Vertebrate skeletal histology and paleohistology. CRC Press, Taylor & Francis, Boca Raton, Fla.CrossRefGoogle Scholar
Buffrénil, V. de, de Muizon, C., Dumont, M., Laurin, M., and Lambert, O.. 2021. Diversity of bone microstructure in mammals. Pp. 564616 in de Buffrénil, V., de Ricqlès, A. J., Padian, K., and Zylberberg, L., eds. Vertebrate skeletal histology and paleohistology. CRC Press, Taylor & Francis, Boca Raton, Fla.CrossRefGoogle Scholar
Butler, E., Abdala, F., and Botha-Brink, J.. 2019. Postcranial morphology of the Early Triassic epicynodont Galesaurus planiceps (Owen) from the Karoo Basin, South Africa. Papers in Palaeontology 5:132.Google Scholar
Butler, R. J., Nesbitt, S. J., Charig, A. J., Gower, D. J., and Barrett, P. M.. 2017. Mandasuchus tanyauchen, gen. et sp. nov., a pseudosuchian archosaur from the Manda Beds (?Middle Triassic) of Tanzania. Journal of Vertebrate Paleontology 37:96121.Google Scholar
Butler, R. J., Fernandez, V., Nesbitt, S. J., Leite, J. V., and Gower, D. J.. 2022. A new pseudosuchian archosaur, Mambawakale ruhuhu gen. et sp. nov., from the Middle Triassic Manda Beds of Tanzania. Royal Society Open Science 9:211622.CrossRefGoogle ScholarPubMed
Chapelle, K. E. J., Botha, J., and Choiniere, J. N.. 2021. Extreme growth plasticity in the early branching sauropodomorph Massospondylus carinatus. Biology Letters 17:rsbl.2020.0843, 20200843.CrossRefGoogle ScholarPubMed
Chinsamy, A., and Abdala, F.. 2008. Palaeobiological implications of the bone microstructure of South American traversodontids (Therapsida: Cynodontia). South African Journal of Science 104:225230.Google Scholar
Chinsamy, A., and Hurum, J. H.. 2006. Bone microstructure and growth patterns of early mammals. Acta Palaeontologica Polonica 51:325338.Google Scholar
Crompton, A. W. 1955. On some Triassic cynodonts from Tanganyika. Proceedings of the Zoological Society of London 125:617669.CrossRefGoogle Scholar
Crompton, A. W. 1963. The evolution of the mammalian jaw. Society for the Study of Evolution 17:10.Google Scholar
Crompton, A. W., and Jenkins, F. A.. 1973. Mammals from reptiles: a review of mammalian origins. Annual Review of Earth and Planetary Sciences 1:131155.CrossRefGoogle Scholar
Crompton, A. W., Joysey, K. A., and Kemp, T. S.. 1972. The evolution of the jaw articulation of cynodonts. Studies in Vertebrate Evolution 17:231251.Google Scholar
Enlow, D. H. (1962) A study of the post-natal growth and remodeling of bone. American Journal of Anatomy 110:79101.CrossRefGoogle ScholarPubMed
Farmer, C. G. 2000. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. American Naturalist 155:326334.CrossRefGoogle ScholarPubMed
Farmer, C. G. 2020. Parental care, destabilizing selection, and the evolution of tetrapod endothermy. Physiology 35:160176.CrossRefGoogle ScholarPubMed
Faure-Brac, M. G., and Cubo, J.. 2020. Were the synapsids primitively endotherms? A palaeohistological approach using phylogenetic eigenvector maps. Philosophical Transactions of the Royal Society B 375:20190138.CrossRefGoogle ScholarPubMed
Fiorelli, L. E., Rocher, S., Martinelli, A. G., Ezcurra, M. D., Hechenleitner, E. M., and Ezpeleta, M.. 2018. Tetrapod burrows from the Middle–Upper Triassic Chañares Formation (La Rioja, Argentina) and its palaeoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 496:85102.CrossRefGoogle Scholar
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Géraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L., and de Ricqlès, A.. 1990. Microstructure and mineralization of vertebrate skeletal tissues. Pp. 175234 in Carter, J. G., ed. Short courses in geology. American Geophysical Union, Washington, D.C.Google Scholar
Funston, G. F., dePolo, P. E., Sliwinski, J. T., Dumont, M., Shelley, S. L., Pichevin, L. E., Cayzer, N. J., et al. 2022. The origin of placental mammal life histories. Nature 610:107111.CrossRefGoogle ScholarPubMed
Garcia Marsà, J. A., Agnolín, F. L., and Novas, F. E.. 2022. Comparative bone microstructure of two non-mammaliaform cynodonts from the Late Triassic (Carnian) Chañares formation of Northwestern Argentina. Historical Biology 36 :109119.CrossRefGoogle Scholar
Griffin, C. T., and Nesbitt, S. J.. 2016a. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds. Proceedings of the National Academy of Sciences USA 113:1475714762.CrossRefGoogle ScholarPubMed
Griffin, C. T., and Nesbitt, S. J.. 2016b. The femoral ontogeny and long bone histology of the Middle Triassic (?late Anisian) dinosauriform Asilisaurus kongwe and implications for the growth of early dinosaurs. Journal of Vertebrate Paleontology 36:e1111224.CrossRefGoogle Scholar
Griffin, C. T., Stefanic, C. M., Lessner, E. J., Riegler, M., Formoso, K., Koeller, K., and Nesbitt, S. J.. 2020. Assessing ontogenetic maturity in extinct saurian reptiles. Biological Reviews 96:470525.Google Scholar
Hopson, J. A. 1969. The origin and adaptive radiation of mammal-like reptiles and nontherian mammals. Annals of the New York Academy of Sciences 167:199216.Google Scholar
Hopson, J. A. 1973. Endothermy, small size, and the origin of mammalian reproduction. American Naturalist 107:446452.CrossRefGoogle Scholar
Hopson, J. A. 2014. The traversodontid cynodont Mandagomphodon hirschsoni from the Middle Triassic of the Ruhuhu Valley, Tanzania. Pp. 233253 in Kammerer, C. F., Angielczyk, K. D., and Fröbisch, J., eds. Early evolutionary history of the Synapsida. Springer, Dordrecht, Netherlands.Google Scholar
Hopson, J. A., and Kitching, J. W.. 1972. A revised classification of cynodonts (Reptilia; Therapsida). Palaeontologia Africana 14:7185.Google Scholar
Hopson, J. A., and Kitching, J. W.. 2001. A probainognathian cynodont from South Africa and the phylogeny of nonmammalian cynodonts. Bulletin of the Museum of Comparative Zoology 156:535.Google Scholar
Hurum, J. H., and Chinsamy-Turan, A.. 2012. The radiation, bone histology, and biology of early mammals. Pp. 249270 in Chinsamy-Turan, A., ed. Forerunners of mammals: radiation, histology, biology. Indiana University Press, Bloomington.Google Scholar
Huttenlocker, A. K., and Farmer, C. G.. 2017. Bone microvasculature tracks red blood cell size diminution in Triassic mammal and dinosaur forerunners. Current Biology 27:4854.CrossRefGoogle ScholarPubMed
Jenkins, F. A. 1971. The postcranial skeleton of African cynodonts. Bulletin of the Peabody Museum of Natural History 36.Google Scholar
Jenkins, F. A. 1973. The functional anatomy and evolution of the mammalian humero-ulnar articulation. American Journal of Anatomy 137:281297.CrossRefGoogle ScholarPubMed
Jones, K. E., Angielczyk, K. D., Polly, P. D., Head, J. J., Fernandez, V., Lungmus, J. K., Tulga, S., and Pierce, S. E.. 2018. Fossils reveal the complex evolutionary history of the mammalian regionalized spine. Science 361:12491252.CrossRefGoogle ScholarPubMed
Kemp, T. S. 1980a. Aspects of the structure and functional anatomy of the Middle Triassic cynodont Luangwa. Journal of Zoology 191:193239.CrossRefGoogle Scholar
Kemp, T. S. 1980b. The primitive cynodont Procynosuchus: structure, function and evolution of the postcranial skeleton. Philosophical Transactions of the Royal Society B 288:217258.Google Scholar
Kemp, T. S. 1982. Mammal-like reptiles and the origin of mammals. Academic Press, New York.Google Scholar
Kemp, T. S. 2006. The origin of mammalian endothermy: a paradigm for the evolution of complex biological structure. Zoological Journal of the Linnean Society 147:473488.CrossRefGoogle Scholar
Kielan-Jaworowska, Z., Cifelli, R. L., and Luo, Z.-X.. 2004. Origins of mammals. In Mammals from the age of dinosaurs. Columbia University Press, New York, pp. 109160.CrossRefGoogle Scholar
Kulik, Z. T. 2023. Rare osteohistological evidence of skeletal maturity in the early diverging traversodontid Scalenodon angustifrons, with comments on histological sampling coverage in Cynodontia. Journal of Vertebrate Paleontology 43:e2249964.Google Scholar
Lamm, E.-T. 2013. Preparation and sectioning of specimens. Pp. 55160 in Padian, K. and Lamm, E.-T., eds. Bone histology of fossil tetrapods: advancing methods, analysis, and interpretation. University of California Press, Berkeley.Google Scholar
LeBlanc, A. R. H., Brink, K. S., Whitney, M. R., Abdala, F., and Reisz, R. R.. 2018. Dental ontogeny in extinct synapsids reveals a complex evolutionary history of the mammalian tooth attachment system. Proceedings of the Royal Society B 285:20181792.CrossRefGoogle ScholarPubMed
Liu, J., and Abdala, F.. 2014. Phylogeny and taxonomy of the Traversodontidae. Pp. 255279 in Kammerer, C. F., Angielczyk, K. D., and Fröbisch, J., eds. Early evolutionary history of the Synapsida. Springer, Dordrecht, Netherlands.CrossRefGoogle Scholar
Liu, J., and Olsen, P.. 2010. The phylogenetic relationships of Eucynodontia (Amniota: Synapsida). Journal of Mammalian Evolution 17:151176.Google Scholar
Lungmus, J. K., and Angielczyk, K. D.. 2019. Antiquity of forelimb ecomorphological diversity in the mammalian stem lineage (Synapsida). Proceedings of the National Academy of Sciences USA 116:69036907.CrossRefGoogle ScholarPubMed
Margerie, E. de, Cubo, J., and Castanet, J.. 2002. Bone typology and growth rate: testing and quantifying “Amprino’s rule” in the mallard (Anas platyrhynchos). Comptes Rendus Biologies 325:221230.CrossRefGoogle ScholarPubMed
Margerie, E. de, Robin, J.-P., Verrier, D., Cubo, J., Groscolas, R., and Castanet, J.. 2004. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). Journal of Experimental Biology 207:869879.Google Scholar
Marín-Moratalla, N., Cubo, J., Jordana, X., Moncunill-Solé, B., and Köhler, M.. 2014. Correlation of quantitative bone histology data with life history and climate: a phylogenetic approach: bone histology in bovids. Biological Journal of the Linnean Society 112:678687.CrossRefGoogle Scholar
Martinelli, A. G., Kammerer, C. F., Melo, T. P., Neto, V. D. Paes, Ribeiro, A. M., Da-Rosa, Á. A. S., Schultz, C. L., and Soares, M. B.. 2017. The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance. PLoS ONE 12:e0177948.CrossRefGoogle ScholarPubMed
Marty, L., Dieckmann, U., Rochet, M.-J., and Ernande, B.. 2011. Impact of environmental covariation in growth and mortality on evolving maturation reaction norms. American Naturalist 177:E98E118.Google ScholarPubMed
McNab, B. K. 1978. The evolution of endothermy in the phylogeny of mammals. American Naturalist 112:121.CrossRefGoogle Scholar
Montes, L., Castanet, J., and Cubo, J.. 2010. Relationship between bone growth rate and bone tissue organization in amniotes: First test of Amprino’s rule in a phylogenetic context. Animal Biology 60:2541.CrossRefGoogle Scholar
Nesbitt, S. J., Butler, R. J., Ezcurra, M. D., Barrett, P. M., Stocker, M. R., Angielczyk, K. D., Smith, R. M. H., et al. 2017. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544:484487.CrossRefGoogle ScholarPubMed
Nesbitt, S. J., Langer, M. C., and Ezcurra, M. D.. 2020. The anatomy of Asilisaurus kongwe, a dinosauriform from the Lifua Member of the Manda Beds (Middle Triassic) of Africa. Anatomical Record 303:813873.CrossRefGoogle ScholarPubMed
Newham, E., Gill, P. G., Brewer, P., Benton, M. J., Fernandez, V., Gostling, N. J., Haberthür, D., et al. 2020. Reptile-like physiology in Early Jurassic stem-mammals. Nature Communications 11:5121.Google ScholarPubMed
O’Meara, R. N., and Asher, R. J.. 2016. The evolution of growth patterns in mammalian versus nonmammalian cynodonts. Paleobiology 42:439464.Google Scholar
Peecook, B. R., Steyer, J. S., Tabor, N. J., and Smith, R. M. H.. 2017. Updated geology and vertebrate paleontology of the Triassic Ntawere Formation of northeastern Zambia, with special emphasis on the archosauromorphs. Journal of Vertebrate Paleontology 37:838.CrossRefGoogle Scholar
Pretto, F. A., Müller, R. T., Moro, D., Garcia, M. S., Neto, V. D. Paes, and Da Rosa, Á. A. S.. 2022. The oldest South American silesaurid: new remains from the Middle Triassic (Pinheiros-Chiniquá Sequence, Dinodontosaurus Assemblage Zone) increase the time range of silesaurid fossil record in southern Brazil. Journal of South American Earth Sciences 120:104039.CrossRefGoogle Scholar
Pusch, L. C., Kammerer, C. F., and Fröbisch, J.. 2024. The origin and evolution of Cynodontia (Synapsida, Therapsida): reassessment of the phylogeny and systematics of the earliest members of this clade using 3D-imaging technologies. Anatomical Record 307:16341730.CrossRefGoogle ScholarPubMed
Ray, S., Botha, J., and Chinsamy, A.. 2004. Bone histology and growth patterns of some nonmammalian therapsids. Journal of Vertebrate Paleontology 24:634648.CrossRefGoogle Scholar
de Ricqlès, A. 1969. Recherches paleohistologiques sur les os longs des tetrapodes; II, Quelques observations sur la structure des os longs des theriodontes. Annales de paléontologie. Vertébrés 55:52.Google Scholar
de Ricqlès, A. 1974. Evolution of endothermy: histological evidence. Evolutionary Theory 1:5180.Google Scholar
Ruta, M., Botha-Brink, J., Mitchell, S. A., and Benton, M. J.. 2013. The radiation of cynodonts and the ground plan of mammalian morphological diversity. Proceedings of the Royal Society B 280:20131865.CrossRefGoogle ScholarPubMed
Sidor, C. A., and Hopson, J. A.. 1998. Ghost lineages and “mammalness”: assessing the temporal pattern of character acquisition in the Synapsida. Paleobiology 24:254273.Google Scholar
Sidor, C. A., and Hopson, J. A.. 2017. Cricodon metabolus (Cynodontia: Gomphodontia) from the Triassic Ntawere Formation of northeastern Zambia: patterns of tooth replacement and a systematic review of the Trirachodontidae. Journal of Vertebrate Paleontology 37:3964.CrossRefGoogle Scholar
Sidor, C. A., McIntosh, J. A., Gee, B. M., Hammer, W. R., Makovicky, P. J., Smith, N. D., Smith, R. M. H., Tabor, N. J., Whitney, M. R., and Woolley, C. H.. 2023. The Fremouw Formation of Antarctica: updated vertebrate fossil record and reevaluation high-paleolatitude Permian–Triassic environments. Earth-Science Reviews 246:104587.Google Scholar
Smith, R. M. H., Sidor, C. A., Angielczyk, K. D., Nesbitt, S. J., and Tabor, N. J.. 2017. Taphonomy and paleoenvironments of Middle Triassic bone accumulations in the Lifua Member of the Manda Beds, Songea Group (Ruhuhu Basin), Tanzania. Journal of Vertebrate Paleontology 37:6579.CrossRefGoogle Scholar
Stearns, S. C. 1983. The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41:173187.CrossRefGoogle Scholar
Stearns, S. C. 1989. Trade-offs in life-history evolution. Functional Ecology 3:259268.Google Scholar
Steyer, J.-S., Peecook, B. R., Arbez, T., Nesbitt, S. J., Tolan, S., Stocker, M. R., Smith, R. M. H., Angielczyk, K. D., and Sidor, C. A.. 2021. New data on the Triassic temnospondyls from the Karoo rift basins of Tanzania and Zambia. Geodiversitas 43:365376.CrossRefGoogle Scholar
Tsuji, L. A. 2017. Mandaphon nadra, gen. et sp. nov., a new procolophonid from the Manda Beds of Tanzania. Journal of Vertebrate Paleontology 37:8087.CrossRefGoogle Scholar
Veiga, F. H., Botha-Brink, J., and Soares, M. B.. 2018. Osteohistology of the non-mammaliaform traversodontids Protuberum cabralense and Exaeretodon riograndensis from southern Brazil. Historical Biology 31:12311241.Google Scholar
Weaver, L. N., Fulghum, H. Z., Grossnickle, D. M., Brightly, W. H., Kulik, Z. T., Mantilla, G. P. Wilson, and Whitney, M. R.. 2022. Multituberculate mammals show evidence of a life history strategy similar to that of placentals, not marsupials. American Naturalist. https://doi.org/10.1086/720410CrossRefGoogle Scholar
Werning, S., and Nesbitt, S. J.. 2016. Bone histology and growth in Stenaulorhynchus stockleyi (Archosauromorpha: Rhynchosauria) from the Middle Triassic of the Ruhuhu Basin of Tanzania. Comptes Rendus Palevol 15:163175.CrossRefGoogle Scholar