Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T15:14:04.633Z Has data issue: false hasContentIssue false

Delayed herbivory and the assembly of marine benthic ecosystems

Published online by Cambridge University Press:  08 February 2016

Geerat J. Vermeij
Affiliation:
Department of Geology, University of California at Davis, One Shields Avenue, Davis, California 95616. E-mail: [email protected]
David R. Lindberg
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California at Berkeley, Berkeley, California 94720-4780. E-mail: [email protected]

Abstract

Phylogenetic analysis of the metazoan evolutionary tree as a whole, and of trees of component major clades, indicates that marine herbivores, defined here as macrophagous consumers of living multicellular attached marine plants, always occupy terminal positions at several scales of analysis. Nearly all living benthic marine herbivores are derived from microphages, detritivores, or predators, and most have post-Paleozoic origins. The derived nature of herbivory in the sea parallels the evolutionary situation among land animals. Pre-Mesozoic marine benthic ecosystems, characterized by relatively low rates of flow of energy and nutrients, may have relied even more heavily on decomposers for the transfer of carbon from primary producers to animals than do living marine ecosystems in the photic zone.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, R. T. 1960. The genus Strombus in the Indo-Pacific. Indo-Pacific Mollusca 2:33146.Google Scholar
Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., Lake, J. A. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489493.CrossRefGoogle ScholarPubMed
Ahlberg, P. E., and Johansen, Z. 1998. Osteolepiforms and the ancestry of tetrapods. Nature 395:792794.CrossRefGoogle Scholar
Akpan, E. B., Farrow, G. E., and Morris, N. 1982. Limpet grazing on Cretaceous algal-bored ammonites. Palaeontology 25:361367.Google Scholar
Awramik, S. M. 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance? Science 174:825827.CrossRefGoogle ScholarPubMed
Bakker, R. T. 1980. Dinosaur heresy—dinosaur renaissance: why we need endothermic archosaurs for a comprehensive theory of bioenergetic evolution. Pp. 351462in Thomas, R. D. K. and Olson, E. C., eds. A cold look at the warm-blooded dinosaurs. Westview Press, Boulder, Colo.Google Scholar
Bandel, K. 1994. Triassic Euthyneura (Gastropoda) from St. Cassian Formation (Italian Alps) with a discussion on the evolution of the Heterostropha. Freiberger Forschungshefte (C) 452:7999.Google Scholar
Beck, A. L., and LaBandeira, C. C. 1998. Early Permian insect folivory on a gigantopteroid-dominated riparian flora from north-central Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 142:139173.CrossRefGoogle Scholar
Blake, D. B. 1987. A classification and phylogeny of post-Paleozoic sea stars (Asteroidea: Echinodermata). Journal of Natural History 21:481528.CrossRefGoogle Scholar
Blake, D. B. 1990. Adaptive zones of the class Asteroidea (Echinodermata). Bulletin of Marine Science 46:701718.Google Scholar
Blake, D. B., and Guensburg, T. E. 1993. New Lower and Middle Ordovician stelleroids (Echinodermata) and their bearing on the origins and early history of the stelleroid echinoderms. Journal of Paleontology 67:103113.CrossRefGoogle Scholar
Blake, D. B., and Guensburg, T. E. 1994. Predation by the Ordovician asteroid Promopalaeaster on a pelecypod. Lethaia 27:235239.CrossRefGoogle Scholar
Blaxter, M. L., DeLey, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J., Mackey, L. Y., Dorris, M., Frisse, L. M., Vida, J. T., and Thomas, W. K. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392:7175.CrossRefGoogle ScholarPubMed
Boore, J. L., Collins, T. M., Manton, D., Daehler, L. L., and Brown, W. M. 1995. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163165.CrossRefGoogle ScholarPubMed
Bousfield, E. L. 1983. An updated phyletic classification and palaeohistory of the Amphipoda. Pp. 257277in Schram, F. R., ed. Crustacean phylogeny. Balkema, Rotterdam.Google Scholar
Brusca, R. C. 1984. Phylogeny, evolution and biogeography of the marine isopod subfamily Idoteinae (Crustacea: Isopoda: Idoteidae). Transactions of the San Diego Society of Natural History 20:99134.CrossRefGoogle Scholar
Butterfield, N. J. 1997. Plankton ecology in the Proterozoic-Phanerozoic transition. Paleobiology 23:247262.CrossRefGoogle Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1990. A bangiophyte red alga from the Proterozoic of Arctic Canada. Science 250:104106.CrossRefGoogle ScholarPubMed
Carlton, J. T. 1976. Marine plant limpets of the northeastern Pacific: patterns of host utilization and comparative plant-limpet distributions. Western Society of Malacologists Annual Report 9:2225.Google Scholar
Collin, R., and Janis, C. M. 1997. Morphological constraints on tetrapod feeding mechanisms: why were there no suspension-feeding marine reptiles? Pp.451466in Callaway, J. M. and Nicholas, E. L., eds. Ancient marine reptiles. Academic Press, San Diego.CrossRefGoogle Scholar
Collins, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.). Journal of Paleontology 70:280293.CrossRefGoogle Scholar
Morris, S. Conway 1998. The crucible of creation: the Burgess Shale and the rise of animals. Oxford University Press, Oxford.Google Scholar
Morris, S. Conway, and Peel, J. S. 1995. Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution. Philosophical Transactions of the Royal Society of London B 347:305358.Google Scholar
DeAngelis, D. L. 1992. Dynamics of nutrient cycling and food webs. Chapman and Hall, London.CrossRefGoogle Scholar
deMaintenon, M. J. 1999. Phylogenetic analysis of the Columbellidae (Mollusca: Neogastropoda) and the evolution of herbivory from carnivory. Invertebrate Biology 118:258288.CrossRefGoogle Scholar
Dixon, I. M. T., and Moore, P. G. 1997. A comparative study on the tubes and feeding behaviour of eight species of corophioid Amphipoda and their bearing on phylogenetic relationships within the Corophioidea. Philosophical Transactions of the Royal Society of London B 352:93112.CrossRefGoogle Scholar
Domning, D. P., Ray, C. E., and McKenna, M. C. 1986. Two new Oligocene desmostylians and a discussion of tethytherian systematics. Smithsonian Contributions to Paleobiology 59:156.CrossRefGoogle Scholar
Edwards, D., Shelton, P. A., Richardson, J. B., and Axe, L. 1995. Coprolites as evidence for plant-animal interaction in Siluro-Devonian terrestrial ecosystems. Nature 377:329331.CrossRefGoogle Scholar
Elton, C. S. 1927. Animal ecology. Sidgwick and Jackson, London.Google Scholar
Estes, J. A., and Steinberg, P. 1988. Predation, herbivory, and kelp evolution. Paleobiology 14:1936.CrossRefGoogle Scholar
Farlow, J. O., and Brett-Surman, M. K., eds. 1997. The complete dinosaur. Indiana University Press, Bloomington.Google Scholar
Farrell, B. D. 1998. “Inordinate fondness” explained: why are there so many beetles? Science 281:555559.CrossRefGoogle ScholarPubMed
Fauchald, K., and Rouse, G. W. 1997. Polychaete systematics: past and present. Zoologica Scripta 26:71138.CrossRefGoogle Scholar
Fischer, A. G. 1984. Biological innovations and the sedimentary record. Pp. 145157in Holland, H. D. and Trendall, A. F., eds. Patterns of change in Earth evolution. Springer, Berlin.CrossRefGoogle Scholar
Förster, R. 1979. Eocarcinus praecursor Withers (Decapoda, Brachyura) from the Lower Pliensbachian of Yorkshire and the early crabs. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1:1527.Google Scholar
Fortey, R. A., and Owens, R. M. 1999. Feeding habits in trilobites. Palaeontology 42:429465.CrossRefGoogle Scholar
Friedrich, M., and Tautz, D. 1995. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165167.CrossRefGoogle ScholarPubMed
Gabbott, S. E., Aldridge, R. J., and Theron, J. N. 1995. A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa. Nature 374:800803.CrossRefGoogle Scholar
Gale, A. S. 1987. Phylogeny and classification of the Asteroidea (Echinodermata). Zoological Journal of the Linnean Society 89:107132.CrossRefGoogle Scholar
Garrett, P. 1970. Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals. Science 169:171173.CrossRefGoogle ScholarPubMed
Glaessner, M. F. 1969. Decapoda. Pp. R399R533in Brooks, H. K. et al. Arthropoda 4. Part R of Moore, R. C. and Teichert, C., eds. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas, Boulder, Colo.Google Scholar
Hawkins, S. J., and Hartnoll, R. G. 1983. Grazing of intertidal algae by marine invertebrates. Oceanography and Marine Biology Annual Review 21:195282.Google Scholar
Hickman, C. S. 1996. Phylogeny and patterns of evolutionary radiation in trochoidean gastropods. Pp. 177198in Taylor, 1996.Google Scholar
Hickman, C. S., and McLean, J. H. 1990. Systematic revision and suprageneric classification of trochacean gastropods. Natural History Museum of Los Angeles County Science Series 35:1169.Google Scholar
Hirayama, R. 1998. Oldest known sea turtle. Nature 392:705707.CrossRefGoogle Scholar
Horn, M. H. 1989. Biology of marine herbivorous fishes. Oceanography and Marine Biology Annual Review 27:167272.Google Scholar
Houbrick, R. S. 1988. Cerithioidean phylogeny. Malacological Reviews(Suppl.) 4:88128.Google Scholar
Hubendick, B. 1945. Siphonariidae. Phylogenie und Tiergeographie der Zoologiske Bidrag Uppsala 24:1216.Google Scholar
Hunter, J. P., and Jernvall, J. 1995. The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences USA 92:1071810722.CrossRefGoogle ScholarPubMed
Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93:145159.CrossRefGoogle Scholar
Jameson, B. G. M., Guinot, D., and de Forges, B. Richer 1995. Phylogeny of the Brachyura (Crustacea, Decapoda): evidence from spermatozoal ultrastructure. Mémoires du Muséum National d'Histoire Naturelle 166:265283.Google Scholar
Jensen, K. R. 1997. Evolution of the Sacoglossa (Mollusca: Opisthobranchia) and the ecological associations of their food plants. Evolutionary Ecology 11:301335.CrossRefGoogle Scholar
Jung, P. 1994. Neogene paleontology in the northern Dominican Republic 15. The genera Columbella, Eurypyrene, Parametaria, Conella, Nitidella, and Metulella (Gastropoda: Columbellidae). Bulletins of American Paleontology 106:145.Google Scholar
Kase, T., and Shigeta, Y. 1996. New species of Patellogastropoda (Mollusca) from the Cretaceous of Hokkaido, Japan and Sakhalin, Russia. Journal of Paleontology 70:762771.CrossRefGoogle Scholar
Kay, E. A. 1996. Evolutionary radiations in the Cypraeidae. Pp. 211230in Taylor, 1996.Google Scholar
Kay, R. F., Ross, C., and Williams, B. A. 1997. Anthropoid origins. Science 275:797804.CrossRefGoogle ScholarPubMed
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. Paleontological Society Memoir 5:195.Google Scholar
Kim, C. B., and Kim, W. 1993. Phylogenetic relationships among gammaridean families and amphipod suborders. Natural History 27:933946.CrossRefGoogle Scholar
Labandeira, C. C. 1997. Insect mouthparts: paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics 28:153193.CrossRefGoogle Scholar
Labandeira, C. C. 1998a. Early history of arthropod and vascular plant associations. Annual Review of Earth and Planetary Science 26:329377.CrossRefGoogle Scholar
Labandeira, C. C. 1998b. The role of insects in Late Jurassic to middle Cretaceous ecosystems. New Mexico Museum of Natural History Science Bulletin 14:105124.Google Scholar
Lafay, B., Smith, A. B., and Christen, R. 1995. A combined morphological and molecular approach to the phylogeny of asteroids (Asteroidea; Echinodermata). Systematic Biology 44:190208.CrossRefGoogle Scholar
Lauder, G. V., and Liem, K. F. 1983. The evolution and interrelationships of actinopterygian fishes. Bulletin of the Museum of Comparative Zoology 150:95197.Google Scholar
Lindberg, D. R. 1990. Morphometrics and the systematics of marine plant limpets Mollusca Patellogastropoda. In Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication 2:301310.Google Scholar
Lindberg, D. R. 1992. Evolution, distribution and systematics of Haliotidae. Pp. 318in Shepherd, S. A., Tegner, M. J., and del Proo, S. A. Guzman, eds. Abalones of the world: biology, fisheries and culture. Proceedings of the first international symposium on abalone. Fishing News Books, Oxford.Google Scholar
Lindberg, D. R., and Ponder, W. F. 1996. An evolutionary tree for the Mollusca: branches or roots? Pp.6775in Taylor, 1996.Google Scholar
Lindquist, E. E., and Oldfield, G. N. 1996. Evolution of eriophyoid mites in relation to their host plants. Pp. 277300in Lindquist, E. E., Sabelis, M. W., and Bruin, J., eds. Eriophyoid mites—their biology, natural enemies and control. Elsevier, Amsterdam.CrossRefGoogle Scholar
Livezey, B. C. 1997. A phylogenetic classification of waterfowl (Aves: Anseriformes), including selected fossil species. Annals of the Carnegie Museum 66:457496.CrossRefGoogle Scholar
Maddison, W. P., Donoghue, M. J., and Maddison, D. R. 1984. Outgroup analysis and parsimony. Systematic Zoology 33:83103.CrossRefGoogle Scholar
Mazaev, A. V. 1998. A new genus of Fissurelloidei (Gastropoda) from the Upper Carboniferous of Moscow Basin: the oldest known example of the suborder. Ruthenica 8:1315.Google Scholar
McLean, J. H. 1984. A case for derivation of the Fissurellidae from the Bellerophontacea. Malacologia 25:320.Google Scholar
McLean, J. H., and Geiger, D. L. 1998. New genera and species having the Fissurisepta shell form, with a generic-level phylogenetic analysis (Gastropoda: Fissurellidae). Contributions in Science (Los Angeles) 475:132.Google Scholar
Mikkelsen, P. M. 1996. The evolutionary relationships of Cephalaspidea s.l. (Gastropoda: Opisthobranchia): a phylogenetic analysis. Malacologia 37:375442.Google Scholar
Mikkelsen, P. M. 1998. Cylindrobulla and Ascobulla in the western Atlantic (Gastropoda, Opisthobranchia, Sacoglossa): systematic review, description of a new species, and phylogenetic reassessment. Zoologica Scripta 27:4971.CrossRefGoogle Scholar
Miles, D. B., and Dunham, A. E. 1993. Historical perspectives in ecology and evolutionary biology—the use of phylogenetic comparative analyses. Annual Review of Ecology and Systematics 24:587619.CrossRefGoogle Scholar
Mitter, C., Farrell, B., and Wiegmann, B. 1988. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? American Naturalist 132:107128.CrossRefGoogle Scholar
Monteforte, M. 1987. The decapod Reptantia and stomatopod crustaceans of a typical high island coral reef in French Polynesia (Tiahura, Moorea Island): zonation, community composition and trophic structure. Atoll Research Bulletin 309:137.CrossRefGoogle Scholar
Mooi, R., and David, B. 1997. Skeletal homologies of echinoderms. Paleontological Society Papers 3:305335.CrossRefGoogle Scholar
Morse, D. H. 1975. Ecological aspects of adaptive radiation in birds. Biological Reviews 50:167214.CrossRefGoogle Scholar
Morton, E. S. 1978. Avian arborial folivores: why not? Pp.123130in Montgomery, G. G., ed. The ecology of arborial folivores. Smithsonian Press, Washington, D.C.Google Scholar
de Muizon, C. and McDonald, H. G. 1995. An aquatic sloth from the Pliocene of Peru. Nature 375:224227.CrossRefGoogle Scholar
Odum, E. P. 1953. Fundamentals of ecology. Saunders, Philadelphia.Google Scholar
O'Hara, R. J. 1988. Homage to Clio or toward an historical philosophy for evolutionary biology. Systematic Zoology 37:142155.CrossRefGoogle Scholar
Olson, S. L., and Feduccia, A. 1980. Relationships and evolution of flamingos (Aves: Phoenicopteridae) Smithsonian Contributions to Zoology 316:173.Google Scholar
Ostrom, J. H. 1963. Further comments on herbivorous lizards. Evolution 17:368369.CrossRefGoogle Scholar
Patterson, C. 1964. A review of Mesozoic acanthopterygian fishes, with special reference to those of the English Chalk. Philosophical Transactions of the Royal Society of London B 247:213482.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews 59:443481.CrossRefGoogle Scholar
Pearse, V., Pearse, J. S., Buchsbaum, M., and Buchsbaum, R. 1987. Living invertebrates. Blackwell Scientific, Palo Alto, Calif.Google Scholar
Penry, D. L., and Jumars, P. A. 1987. Modeling animal guts as chemical reactors. American Naturalist 129:6996.CrossRefGoogle Scholar
Ponder, W. F., and Lindberg, D. R. 1997. Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society 119:83265.CrossRefGoogle Scholar
Powell, A. W. B. 1973. The patellid limpets of the world (Patellidae). Indo-Pacific Mollusca 3:75206.Google Scholar
Purnell, M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates. Nature 374:798800.CrossRefGoogle Scholar
Regier, J. C., and Schultz, J. W. 1998. Molecular phylogeny of arthropods and the significance of the Cambrian “explosion” for molecular systematics. American Zoologist 38:918928.CrossRefGoogle Scholar
Reid, D. G. 1989. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philosophical Transactions of the Royal Society of London B 324:1110.Google Scholar
Reid, D. G. 1996. Systematics and evolution of Littorina. Ray Society, London.Google ScholarPubMed
de Ridder, C. and Lawrence, J. M. 1982. Food and feeding mechanisms: Echinoidea. Pp. 57115in Jansoux, M. and Lawrence, J. M., eds. Echinoderm nutrition. Balkema, Rotterdam.Google Scholar
Robinson, J. M. 1990. The burial of organic carbon as affected by the evolution of land plants. Historical Biology 3:189201.CrossRefGoogle Scholar
Rosa, de, Grenier, R. J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Carroll, S. B., and Balavoine, G. 1999. Hox genes in Brachipods and priapulids: implications for protostome evolution. Nature 399:772776.CrossRefGoogle Scholar
Rouse, G. W., and Fauchald, K. 1997. Cladistics and polychaetes. Zoologica Scripta 26:139204.CrossRefGoogle Scholar
Rouse, G. W., and Fauchald, K. 1998. Recent views on the status, delineation and classification of the Annelida. American Zoologist 38:953964.CrossRefGoogle Scholar
Roy, K. 1994. Effects of the Mesozoic marine revolution on the taxonomic, morphologic, and biogeographic evolution of a group: aporrhaid gastropods during the Mesozoic. Paleobiology 20:275296.CrossRefGoogle Scholar
Roy, K. 1996. The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods. Paleobiology 22:436452.CrossRefGoogle Scholar
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A., and Baguñà, J. 1999. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283:19191923.CrossRefGoogle Scholar
Ruppert, E. E., and Barnes, R. D. 1994. Invertebrate zoology, 6th ed. Saunders College Publishing, Fort Worth, Tex.Google Scholar
Sasaki, T. 1998. Comparative anatomy and phylogeny of the Recent Archaeogastropoda (Mollusca: Gastropoda). University of Tokyo Bulletin 38:1223.Google Scholar
Savage, R. J. G., Domning, D. P., and Thewissen, G. J. M. 1994. Fossil Sirenia of the west Atlantic and Caribbean region. V. The most primitive known sirenian, Prorastomus sirenoides Owen, 1855. Journal of Vertebrate Paleontology 14:427449.CrossRefGoogle Scholar
Schäfer, W. 1954. Form und Funktion der Brachyuren Schere. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 489:166.Google Scholar
Scholtz, G., and Richter, S. 1995. Phylogenetic system of the reptantian Decapoda (Crustacea, Malacostraca). Zoological Journal of the Linnean Society 113:289328.CrossRefGoogle Scholar
Schram, F. R. 1982. The fossil record and the evolution of Crustacea. Pp. 93147in Abele, L. C., ed. The biology of Crustacea, Vol. 1. Systematics, the fossil record, and biogeography. Academic Press, New York.Google Scholar
Shaffer, H. B., Meylan, P., and McKnight, M. L. 1997. Tests of turtle phylogeny: molecular, morphological, and phylogenetic systematics of paleontological approaches. Systematic Biology 56:235268.CrossRefGoogle Scholar
Shear, W. A. 1991. The early development of terrestrial ecosystems. Nature 351:283289.CrossRefGoogle Scholar
Signor, P. W. III, and Vermeij, G. J. 1994. The plankton and the benthos: origins and early history of an evolving relationship. Paleobiology 20:297319.CrossRefGoogle Scholar
Sirenko, B. I. 1997. The importance of the development of articulamentum for taxonomy of chitons (Mollusca, Polyplacophora). Ruthenica 7:124.Google Scholar
Smith, A. B. 1984. Echinoid paleobiology. Allen and Unwin, London.Google Scholar
Smith, A. B., and Jell, P. A. 1990. Cambrian edrioasteroids from Australia, and the origin of starfishes. Memoirs of the Queensland Museum 28:715778.Google Scholar
Solem, A. 1979. Biogeographic significance of land snails, Paleozoic to Recent. Pp. 277287in Gray, J. and Boucot, A. J., eds. Historical biogeogaphy, plate tectonics, and the changing environment. Oregon State University Press, Corvallis.Google Scholar
Stanley, S. M. 1973. An ecological theory for the sudden origin of multicellular life in the Late Precambrian. Proceedings of the National Academy of Sciences USA 70:14861489.CrossRefGoogle ScholarPubMed
Steneck, R. S. 1983. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:4461.CrossRefGoogle Scholar
Steneck, R. S., and Dethier, M. N. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69:476498.CrossRefGoogle Scholar
Steneck, R. S., and Watling, L. 1982. Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Marine Biology 68:299319.CrossRefGoogle Scholar
Stuber, R. A., and Lindberg, D. R. 1990. Is the radula of living monoplacophorans primitive? Geological Society of America Abstracts with Programs 21(7):A289.Google Scholar
Taylor, J. D., ed. 1996. Origin and evolutionary ratiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Tillier, S., Masselot, M., and Tillier, A. 1996. Phylogenetic relationships of the pulmonate gastropods from rRNA sequences, and tempo and range of the stylommatophoran radiation. Pp. 267284in Taylor, 1996.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1978. Biogeography and adaptations: patterns of marine life. Harvard University Press, Cambridge.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.CrossRefGoogle Scholar
Vermeij, G. J. 1999. Inequality and the directionality of history. American Naturalist 153:243253.CrossRefGoogle ScholarPubMed
Vidal, G. 1989. Are latest Proterozoic carbonaceous megafossils metaphytic algae or bacteria? Lethaia 22:375379.CrossRefGoogle Scholar
Vidal, G. 1994. Early ecosystems and the fossil record. Pp. 298311in Bengtson, S., ed. Early life on Earth. (Nobel Symposium No. 84.)Columbia University Press, New York.Google Scholar
Wallace, A. R. 1858. On the tendency of varieties to depart indefinitely from the original type. In Darwin, C. and Wallace, A. R., eds. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Journal of the Linnean Society (Zoology) 3:4562.Google Scholar
Wallace, R. L., and Colburn, R. A. 1989. Phylogenetic relationships within phylum Rotifera: orders and genus Notholca. Hydrobiologia 186-187:311318.CrossRefGoogle Scholar
Walter, M. R., and Heys, G. R. 1985. Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Research 29:159174.CrossRefGoogle Scholar
Watling, L. 1981. An alternative phylogeny of peracarid crustaceans. Journal of Crustacean Biology 1:201210.CrossRefGoogle Scholar
Watling, L. 1993. Functional morphology of the amphipod mandible. Journal of Natural History 27:37849.CrossRefGoogle Scholar
Webers, G. F., Yochelson, E. L., and Kase, T. 1991. Observations on a Late Cambrian cephalopod. Lethaia 24:347348.CrossRefGoogle Scholar
Winterbottom, R., and McLennan, D. A. 1994 (1993). Cladogram versatility: evolution and biogeography of acanthuroid fishes. Evolution 47:15571571.Google Scholar
Wootton, R. J. 1988. The historical ecology of aquatic insects: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 62:477492.CrossRefGoogle Scholar
Wu, X.-C., Sues, H.-D., and Sun, A. 1995. A plant-eating crocodyliform reptile from the Cretaceous of China. Nature 376:678680.CrossRefGoogle Scholar
Yuan, X., Li, J., and Cao, R., 1999. A diverse metaphyte assemblage from the Neoproterozoic blackshales of South China. Lethaia 32:143155.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998a. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553558.CrossRefGoogle Scholar
Xiao, S., Knoll, A. H., and Yuan, X. 1998b. Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the Neoproterozoic Doushantuo Formation, south China. Journal of Paleontology 72:10771086.CrossRefGoogle Scholar
Zrzavy, J., Mihulka, S., Kepka, P., Bezdek, A., and Tietz, D. 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249285.CrossRefGoogle ScholarPubMed