Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T14:44:50.509Z Has data issue: false hasContentIssue false

Death on “live broadcast”—fish mortichnia from the Upper Cretaceous plattenkalk of Lebanon

Published online by Cambridge University Press:  21 January 2025

Richard Pokorný*
Affiliation:
Na Výšině 502, CZ-40331 Ústí nad Labem, Czech Republic
Roy Nohra
Affiliation:
Expo Hakel, Lebanese Fossil Museum, 4354 Haqil–Jbeil (Byblos), Lebanon
Pierre Abi Saad
Affiliation:
Mémoire du Temps, 4504 Citadel Area–Jbeil (Byblos), Lebanon
Lothar H. Vallon
Affiliation:
Geomuseum Faxe, Østsjællands Museum, Rådhusvej 2, DK-4640 Faxe, Denmark
*
Corresponding author: Richard Pokorný; Email: [email protected]

Abstract

Proper identification of behavioral patterns is an important prerequisite for the identification of any trace fossil and even more so for its interpretation. For the last 70 yr, the continually advancing state of ichnological knowledge has led to a gradual recognition of recurrent patterns of organismal behavior documented in the fossil record, which in turn gave rise to the ethological categories. “Mortichnia” was proposed for traces created during a death struggle of the tracemaker but has been reported only in a few cases. Fish mortichnia so far have only been reported in one specimen recovered from the Upper Jurassic Plattenkalk of Nusplingen (SW Germany). The category mortichnia is refined herein, but remains ambiguous. Eight newly discovered unique specimens of mortichnia from Upper Cretaceous marine sediments in central Lebanon (Haqil, En Nammoura) are preserved together with their tracemakers and described herein. In addition, 14 further incomplete specimens were collected where no tracemakers are present. However, morphology and close provenance allow them to be assigned to the same ichnotaxon.

The Lebanese mortichnia originate from fish that were subjected to significant environmental or individual stress leading to their deaths. During death convulsions, their bodies created sedimentary structures with a specific recurring morphology. The ichnogenus Pinnichnus n. igen. with ichnospecies P. haqilensis and P. emmae n. ispp. is proposed for these specimens.

Type
Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abel, O. 1922. Lebensbilder aus der Tierwelt der Vorzeit. Fischer-Verlag, Jena.CrossRefGoogle Scholar
Barale, G., Makhoul, E., and Saad, D.. 2004. Cenomanian flora from Nammoura (Lebanon): systematic and palaeoecology. Revue de Paleobiologie 23:139156.Google Scholar
Barthel, K. W. 1978. Solnhofen—Ein Blick in die Erdgeschichte. Ott Verlag, Thun.Google Scholar
Barthel, K. W., Swinburne, N. H. M., and Conway Morris, S.. 1994. Solnhofen: a study in Mesozoic palaeontology. Cambridge University Press, Cambridge.Google Scholar
Belaústegui, Z., Muñiz, F., Mángano, M. G., Buatois, L. A., Domènech, R., and Martinell, J.. 2016. Lepeichnus giberti igen. nov. isp. nov. from the upper Miocene of Lepe (Huelva, SW Spain): evidence for its origin and development with proposal of a new concept, ichnogeny. Palaeogeography, Palaeoclimatology, Palaeoecology 452:8089.CrossRefGoogle Scholar
Benner, J. S., Ridge, J. C., and Taft, N. K.. 2008. Late Pleistocene freshwater fish (Cottidae) trackways from New England (USA) glacial lakes and a reinterpretation of the ichnogenus Broomichnium Kuhn. Palaeogeography, Palaeoclimatology, Palaeoecology 260:375388.CrossRefGoogle Scholar
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., et al. 2006. Names for trace fossils: a uniform approach. Lethaia 39:265286.CrossRefGoogle Scholar
Bertling, M., Buatois, L., Knaust, D., Laing, B., Mángano, G., Meyer, N., Mikuláš, R., et al. 2022. Names for trace fossils 2.0: theory and practice in ichnotaxonomy. Lethaia 55:119.CrossRefGoogle Scholar
Bromley, R. G. 1996. Trace fossils: biology, taphonomy and applications. Chapman & Hall, London.CrossRefGoogle Scholar
Cabral-Perdomo, M. A. 1996. A flamingo's taphoglyph from the Pie de Vaca Formation (late Cenozoic), near Tepexi de Rodriguez, central Mexico: an unusual paleontological phenomenon. Journal of Vertebrate Paleontology 16(Suppl. to No. 3):25A.Google Scholar
Dalla Vecchia, F. M., Venturini, S., and Tentor, M.. 2002. The Cenomanian (Late Cretaceous) Konservat-Lagerstätte of en Nammoûra (Kesrouâne Province), northern Lebanon. Bollettino della Società Geologica Italiana 41:5168.Google Scholar
Damiani, R., Modesto, S., Yates, A., and Neveling, J.. 2003. Earliest evidence of cynodont burrowing. Proceedings of the Royal Society B 270:17471752.CrossRefGoogle ScholarPubMed
Davis, J. W. 1887. The fossil fishes of the Chalk of Mount Lebanon, in Syria. Scientific Transactions of the Royal Dublin Society 3:457636.Google Scholar
Etheridge, R. 1918. The dendroglyphs or “carved trees” of New South Wales. Department of Mines, Sydney.Google Scholar
Fortey, R. A., and Seilacher, A.. 1997. The trace fossil Cruziana semiplicata and the trilobite that made it. Lethaia 30:105112.CrossRefGoogle Scholar
Frey, R. W. 1973. Concepts in the study of biogenic sedimentary structures. Journal of Sedimentary Petrology 43:619.Google Scholar
Frickhinger, K. A. 1994. Die Fossilien von Solnhofen. Goldschneck-Verlag, Korb.Google Scholar
Gayet, M., Abi Saad, P., and Gaudant, O.. 2012. The fossils of Lebanon. Memory of time. Éditions DésIris, Paris.Google Scholar
Ghalayini, R., Nader, F. H., Bou Daher, S., Hawie, N., and Chbat, W. E.. 2018. Petroleum systems of Lebanon: an update and review. Journal of Petroleum Geology 41:189214.CrossRefGoogle Scholar
Groenewald, G. H. 1991. Burrow casts from the Lystrosaurus-Procolophon Assemblage Zone, Karoo sequence, South Africa. Koedoe 34:1322.CrossRefGoogle Scholar
Groenewald, G. H. 1996. Stratigraphy and Sedimentology of the Tarkastad Subgroup, South Africa. Unpublished Ph.D. Thesis, University of Port Elizabeth, South Africa, 145 pp.Google Scholar
Groenewald, G. H., Welman, J., and MacEachern, J. A.. 2001. Vertebrate burrow complexes from the Early Triassic Cynognathus zone (Driekoppen Formation, Beaufort Group) of the Karoo Basin, South Africa. Palaios 16:148160.2.0.CO;2>CrossRefGoogle Scholar
Hesselbo, S. P. 1988. Trace fossils of Cambrian aglaspidid arthropods. Lethaia 21:139146.CrossRefGoogle Scholar
Howard, J. H. 1976. Lebensspuren produced by insect wings. Journal of Paleontology 50:833840.Google Scholar
Hückel, U. 1970. Die Fischschiefer von Haqel und Hjoula in der Oberkreide des Libanon. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 135:113149.Google Scholar
Jacobsen, A. R., and Bromley, R. G.. 2009. New ichnotaxa based on tooth impressions on dinosaur and whale bones. Geological Quarterly 53:373382.Google Scholar
Krings, M., and Mayr, H.. 2004. Bassonia hakelensis (Basson) nov. comb., a rare non-calcareous marine alga from the Cenomanian (Upper Cretaceous) of Lebanon. Zitteliana A44:105111.Google Scholar
Leich, H. 1993. Fossil und Sediment: Beobachtungen an einem Mecochirus longimanus. Fossilien 1993:310313.Google Scholar
Lomax, D. R., and Racay, C. A.. 2012. A long mortichnial trackway of Mesolimulus walchi from the Upper Jurassic Solnhofen lithographic limestone near Wintershof, Germany. Ichnos 19:175183.CrossRefGoogle Scholar
Lomax, D. R., Falkingham, P. L., Schweigert, G., and Jiménez, A. P.. 2017. An 8.5 m long ammonite drag mark from the Upper Jurassic Solnhofen Lithographic Limestones, Germany. PLoS ONE 12:e0175426.CrossRefGoogle ScholarPubMed
Lucas, S. G. 2001. Taphotaxon. Lethaia 34:30.CrossRefGoogle Scholar
MacNaughton, R. B., and Pickerill, R. K.. 2003. Taphonomy and the taxonomy of trace fossils: a commentary. Lethaia 36:6669.CrossRefGoogle Scholar
Malz, H. 1964. Kouphichnium walchi, die Geschichte einer Fährte und ihres Tieres. Natur und Museum 94:8197.Google Scholar
Marramà, G., Bannikov, A. F., Tyler, J. C., Zorzin, R., and Carnevale, G.. 2016. Controlled excavations in the Pesciara and Monte Postale sites provide new insights about the palaeoecology and taphonomy of the fish assemblages of the Eocene Bolca Konservat-Lagerstätte, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 454:228245.CrossRefGoogle Scholar
Martin, P., and Bateson, P.. 2021. Measuring behaviour: an introductory guide. Cambridge University Press, Cambridge.Google Scholar
Mayr, F. X. 1967. Paläobiologie und Stratinomie der Plattenkalke der Altmühlalb. Erlanger geologische Abhandlungen 67:140.Google Scholar
Mikuláš, R. 1990. The ophiuroid Taeniasteras a tracemaker of Asteriacites, Ordovician of Czechoslovakia. Ichnos 1:133137.CrossRefGoogle Scholar
Minter, N. J., and Braddy, S. J.. 2006. The fish and amphibian swimming traces Undichna and Lunichnium, with examples from the Lower Permian of New Mexico, USA. Palaeontology 49:11231142.CrossRefGoogle Scholar
Minter, N. J., Braddy, S. J., and Davis, R. B.. 2007. Between a rock and a hard place: arthropod trackways and ichnotaxonomy. Lethaia 40:365375.CrossRefGoogle Scholar
Modesto, S. P., and Botha-Brink, J.. 2010. A burrow cast with Lystrosaurus skeletal remains from the Lower Triassic of South Africa. Palaios 25:274281.CrossRefGoogle Scholar
Niedźwiedzki, G., Singer, T., Gierliński, G. D., and Lockley, M. G.. 2012. A protoceratopsid skeleton with an associated track from the Upper Cretaceous of Mongolia. Cretaceous Research 33:710.CrossRefGoogle Scholar
Pasini, G., Garassino, A., De Angeli, A., Hyžný, M., Giusberti, L., and Zorzin, R.. 2019. Eocene decapod faunas from the Konservat-Lagerstätten laminites of “Pesciara” (Bolca, Verona) and Monte Postale (Altissimo, Vicenza) in northeast Italy: a review and update. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 293:233270.CrossRefGoogle Scholar
Pavoni, N. 1959. Rollmarken von Fischwirbeln aus den oligozänen Flyschschiefern von Engi-Matt (Kt. Glarus). Eclogae geologicae Helvetiae 52:941949.Google Scholar
Pemberton, S. G., MacEachern, J. A., and Frey, R. W.. 1992. Trace fossil facies models: environmental and allostratigraphic significance. Pp. 4772 in Walker, R. G. and James, N. P., eds. Facies models—response to sea level change. Geological Association of Canada, St. John's, Newfoundland.Google Scholar
Rindsberg, A. 2018. Ichnotaxonomy as a science. Annales Societatis Geologorum Poloniae 88:91110.Google Scholar
Röper, M. and Rothgaenger, M.. 1998. Die Plattenkalke von Hienheim (Landkreis Kelheim). Eichendorf Verlag, Eichendorf.Google Scholar
Röper, M., Leich, H., and Rothgaenger, M.. 1999. Die Plattenkalke von Pfalzpaint (Landkreis Eichstätt)—Faszination fossiler Quallen. Eichendorf Verlag, Eichendorf.Google Scholar
Sarjeant, W. A. S. 1975. Fossil tracks and impressions of vertebrates. Pp. 283324 in Frey, R. W., ed. The study of trace fossils: a synthesis of principles, problems and procedures in ichnology. Springer, Berlin.CrossRefGoogle Scholar
Schreiber, A. M. 2013. Flatfish: an asymmetric perspective on metamorphosis. In Shi, Y.-B., ed. Animal metamorphosis. Current Topics in Developmental Biology 103:167194. Academic Press, Burlington, Mass.Google Scholar
Schweigert, G. 1998. Die Spurenfauna des Nusplinger Plattenkalks (Oberjura, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde B262:147.Google Scholar
Schweigert, G. 2007. Preservation of decapod crustaceans in the Upper Jurassic lithographic limestones of southern Germany. In Garassino, A., Feldmann, R. M., and Teruzzi, G., eds. Third symposium on Mesozoic and Cenozoic decapod crustaceans. Memorie della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano 35:8790.Google Scholar
Schweigert, G., and Dietl, G.. 2005. Miscellanea aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb) 6. Die Spurengattung Telsonichnus. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins, Neue Folge 87:431438.CrossRefGoogle Scholar
Schweigert, G., Maxwell, E., and Dietl, G.. 2016. First record of a true mortichnium produced by a fish. Ichnos 23:7176.CrossRefGoogle Scholar
Seilacher, A. 1953. Studien zur Palichnologie, Teil I: Über die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 96:421452.Google Scholar
Seilacher, A. 1963. Umlagerung und Rolltransport von Cephalopoden-Gehäusen. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1963:593615.Google Scholar
Seilacher, A. 2007. Trace fossil analysis. Springer, Berlin.Google Scholar
Sharma, M. 2019. Behavioural responses in effect to chemical stress in fish: a review. International Journal of Fisheries and Aquatic Studies 7:15.Google Scholar
Simon, T., Hagdorn, H., Hagdorn, M. K., and Seilacher, A.. 2003. Swimming trace of a coelacanth fish from the Lower Keuper of south-west Germany. Palaeontology 46:911926.CrossRefGoogle Scholar
Tinbergen, N. 1963. On aims and methods of ethology. Zeitschrift für Tierpsychologie 20:410433.CrossRefGoogle Scholar
Trewin, N. H. 2000. The ichnogenus Undichna, with examples from the Permian of the Falkland Islands. Palaeontology 43:979997.CrossRefGoogle Scholar
Uchman, A., and Wetzel, A.. 2016. Sequestrichnia—a new ethological category of trace fossils in oligotrophic deep-sea environments, P. 190 in Baucon, A., De Carvalho, C. N., and Rodrigues, J., eds. Ichnia 2016. Abstract Book. UNESCO Geopark Naturtejo/International Ichnological Association, Castelo Branco, Portugal.Google Scholar
Vallon, L. H., Schweigert, G., Bromley, R. G., Röper, M., and Ebert, M.. 2015a. Ecdysichnia – a new ethological category for trace fossils produced by moulting. Annales Societatis Geologorum Poloniae 85:433444.Google Scholar
Vallon, L. H., Rindsberg, A. K., and Martin, A. J.. 2015b. The use of the terms trace, mark and structure. Annales Societatis Geologorum Poloniae 85:527528.Google Scholar
Vallon, L. H., Rindsberg, A. K., and Bromley, R. G.. 2016. An updated classification of animal behaviour preserved in substrates. Geodinamica Acta 28:520.CrossRefGoogle Scholar
Viohl, G. 1998. Die Solnhofener Plattenkalke—Entstehung und Lebensräume. Archaeopteryx 16:3768.Google Scholar
Walley, C. D. 1997. The lithostratigraphy of Lebanon: a review. Lebanese Scientific Bulletin 10:81108.Google Scholar
Watkins, R., and Coorough, P. J.. 1997. Silurian Thalassinoides in an offshore carbonate community, Wisconsin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 129:109117.CrossRefGoogle Scholar
Weigelt, J. 1927. Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung. Verlag von Max Weg, Leipzig.Google Scholar
White, A. W. 1981. Sensitivity of marine fishes to toxins from the red-tide dinoflagellate Gonyaulax excavata and implications for fish kills. Marine Biology 65:255260.CrossRefGoogle Scholar