Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T21:56:58.195Z Has data issue: false hasContentIssue false

Conductance in the wood of selected Carboniferous plants

Published online by Cambridge University Press:  08 April 2016

Michael A. Cichan*
Affiliation:
Department of Botany and Microbiology, Arizona State University, Tempe, Arizona 85287

Abstract

Specific conductance was calculated for secondary xylem in seven Carboniferous stem taxa utilizing an equation derived from the Hagen-Poiseuille relation. Arborescent and lianoid representatives of major pteridophytic (Calamitaceae, Lepidodenraceae, Sphenophyllaceae) and gymnospermous (Cordaitaceae, Medullosaceae) groups were examined. In the calamite Arthropitys communis and the seed plant Cordaites (Cordaixylon sp. and Mesoxylon sp.), conductance corresponded approximately to the low end of the range for both extant conifers and angiosperms. A substantially higher conductance was determined for the wood of Arthropitys deltoides, conforming to the high end of the range for conifers and the low-middle part of the range for angiosperms. The highest conductance values were found in Sphenophyllum plurifoliatum, Medullosa noei, and Paralycopodites brevifolius and corresponded to the middle-high portion of the range for vessel-containing angiosperms. This outcome is particularly significant in light of the fact that tracheary elements in the fossils are imperforate. The results indicate that conductance in secondary xylem of some of the most ancient, woody groups was comparable to that in extant plants and that highly effective conducting tissue developed relatively early in plant evolution. Moreover, it is suggested that the general relationship between wood anatomy, growth habit, and ecology demonstrated for living plants can also be extended back in time to include fossil plants.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrews, H. N. 1945. Contribution to our knowledge of American Carboniferous floras. VII. Some pteridosperm stems from Iowa. Ann. Mo. Bot. Gard. 32:323360.CrossRefGoogle Scholar
Baas, P. 1976. Some functional and adaptive aspects of vessel member morphology. Pp. 157181. In: Baas, P., Boulton, A., and Catling, D., eds. Wood Structure in Biological and Technological Research. Leiden Univ. Press; Leiden.Google Scholar
Bailey, I. W. 1953. Evolution of the tracheary tissue in land plants. Am. J. Bot. 40:48.CrossRefGoogle Scholar
Bailey, I. W. 1958. The structure of tracheids in relation to the movement of liquids, suspensions, and undissolved gasses. Pp. 7182. In: Thimann, K. V., ed. The Physiology of Forest Trees. Ronald Press; New York.Google Scholar
Bailey, I. W. and Faull, A. F. 1934. The cambium and its derivative tissues. IX. Structural variability in the redwood Sequoia sempervirens, and its significance in the identification of the fossil woods. J. Arnold Arbor. 15:233254.Google Scholar
Bannan, M. W. 1964. Tracheid size and anticlinal division in the cambium of Pseudotsuga. Can. J. Bot. 42:603631.Google Scholar
Batenburg, L. H. 1982. “Compression species” and “petrifaction species” of Sphenophyllum compared. Rev. Palaeobot. Palynol. 36:335359.Google Scholar
Baxter, R. W. 1949. Some pteridosperm stems and fructifications with particular reference to the Medullosae. Ann. Mo. Bot. Gard. 36:287352.CrossRefGoogle Scholar
Beck, C. B. 1964. The woody, fern-like trees of the Devonian. Mem. Torrey Bot. Club. 21:2637.Google Scholar
Beck, C. B., Coy, K., and Schmid, R. 1980. Observations on the fine structure of Callixylon wood. Am. J. Bot. 69:5476.CrossRefGoogle Scholar
Bierhorst, D. W. 1958. The tracheary elements of Equisetum with observations on the ontogeny of the internodal xylem. Bull. Torrey Bot. Club. 85:416433.Google Scholar
Braun, H. J. 1984. The significance of the accessory tissues of the hydrosystem for osmotic water shifting as the second principle of water ascent, with some thoughts concerning the evolution of trees. IAWA Bull., N.S. 5:275294.CrossRefGoogle Scholar
Calkin, H. W., Gibson, A. C., and Nobel, P. S. 1985. Xylem water potentials and hydraulic conductances in eight species of ferns. Can. J. Bot. 63:632637.CrossRefGoogle Scholar
Carlquist, S. 1975. Ecological strategies in xylem evolution. Univ. California Press; Berkeley.Google Scholar
Carlquist, S. 1977. Ecological factors in wood evolution: a floristic approach. Am. J. Bot. 64:887896.Google Scholar
Carlquist, S. 1980. Further concepts in ecological wood anatomy, with comments on recent work in wood anatomy and evolution. Aliso. 9:499553.Google Scholar
Carlquist, S. 1982. Wood anatomy of Daphniphyllaceae: Ecological and phylogenetic considerations, review of Pittosporalean families. Brittonia. 34:252266.Google Scholar
Carlquist, S. 1984. Wood and stem anatomy of Lardizabalaceae, with comments on the vining habit, ecology and systematics. Bot. J. Linnean Soc. 88:257277.Google Scholar
Carlquist, S. and DeBuhr, L. 1977. Wood anatomy of Penaceae (Myrtales): Comparative, phylogenetic, and ecological implications. Bot. J. Linnean Soc. 75:211227.Google Scholar
Carlquist, S. and Hoekman, D. A. 1985. Ecological wood anatomy of the woody southern California flora. IAWA Bull., N.S. 6:319347.Google Scholar
Cichan, M. A. 1985a. Vascular cambium and wood development in Carboniferous plants. I. Lepidodendrales. Am. J. Bot. 72:11631176.CrossRefGoogle Scholar
Cichan, M. A. 1985b. Vascular cambium and wood development in Carboniferous plants. II. Sphenophyllum plurifoliatum. Bot. Gaz. 146:395403.CrossRefGoogle Scholar
Cichan, M. A. 1986a. Vascular cambium and wood development in Carboniferous plants. III. Arthropitys (Equisetales, Calamitaceae). Can. J. Bot. 64:688695.Google Scholar
Cichan, M. A. 1986b. Vascular cambium and wood development in Carboniferous plants. IV Seed plants. Bot. Gaz. (in press).Google Scholar
Cichan, M. A. and Taylor, T. N. 1983. A systematic and developmental analysis of Arthropitys deltoides sp. nov. Bot. Gaz. 144:285294.Google Scholar
DiMichele, W. A. 1980. Paralycopodites Morey & Morey, from the Carboniferous of Euramerica—a reassessment of generic affinities and evolution of “Lepidodendron” brevifolium Williamson. Am. J. Bot. 67:14661476.Google Scholar
DiMichele, W. A. and Phillips, T. L. 1985. Arborescent lycopod reproduction and paleoecology in a coal-swamp environment of late Middle Pennsylvanian age. (Herrin Coal, Illinois, U.S.A.). Rev. Palaeobot. Palynol. 44:126.Google Scholar
Delevoryas, T. 1955. The Medullosales—structure and relationships. Palaeontographica. 97B:114167.Google Scholar
Eggert, D. A. 1961. The ontogeny of Carboniferous arborescent Lycopsida. Palaeontographica. 108B:4392.Google Scholar
Eggert, D. A. 1962. The ontogeny of Carboniferous arborescent Sphenopsida. Palaeontographica. 110B:99127.Google Scholar
Ewers, F. W. 1985. Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bull., N.S. 6:309317.Google Scholar
Ewers, F. W. and Zimmermann, M. H. 1984a. The hydraulic architecture of balsam fir (Abies balsamea). Physiol. Plant. 60:453458.Google Scholar
Ewers, F. W. and Zimmermann, M. H. 1984b. The hydraulic architecture of eastern hemlock (Tsuga canadensis). Can. J. Bot. 62:940946.CrossRefGoogle Scholar
Farmer, J. B. 1918. On the quantitative differences in the water conductivity of the wood in trees and shrubs. Proc. R. Soc. Lond. 90B:218250.Google Scholar
Filzner, P. 1948. Ein Beitrag zur ökologischen Anatomie von Rhynia. Biol. Zentralbl. 67:1317.Google Scholar
Gibson, A. C., Calkin, H. W., and Nobel, P. S. 1984. Xylem anatomy, water flow, and hydraulic conductance in the fern Cyrtomium falcatum. Am. J. Bot. 71:564574.Google Scholar
Gibson, A. C., Calkin, H. W., and Nobel, P. S. 1985. Hydraulic conductance and xylem structure in tracheid-bearing plants. IAWA Bull., N.S. 6:293302.Google Scholar
Giordano, R., Salleo, A., Salleo, S., and Wanderlingh, F. 1978. Flow in xylem vessels and Poiseuille's law. Can. J. Bot. 56:333338.Google Scholar
Joy, K. W., Willis, A. J., and Lacey, W. S. 1956. A rapid peel technique in paleobotany. Ann. Bot. 20:635637.Google Scholar
Kienholz, R. 1931. Effect of environmental factors on the wood structure of lodgepole pine, Pinus contorta Loudon. Ecology. 12:354379.Google Scholar
Lewis, A. M. and Tyree, M. T. 1985. The relative susceptibility to embolism of larger vs. smaller tracheids in Thuja occidentalis. (Abstract). IAWA Bull., N.S. 6:93.Google Scholar
Mickle, J. E. 1980. Ankyropteris from the Pennsylvanian of eastern Kentucky. Bot. Gaz. 141:230243.Google Scholar
Mustafa, H. 1975. Beiträge zur Devonflora. I. Arg. Palaeobot. 4:101133.Google Scholar
Niklas, K. J. 1985. The evolution of tracheid diameter in early vascular plants and its implications on the hydraulic conductance of the primary xylem strand. Evolution. 39:11101122.Google Scholar
Niklas, K. J. and Banks, H. P. 1985. Evidence for xylem constrictions in the primary vasculature of Psilophyton dawsonii, an Emsian trimerophyte. Am. J. Bot. 72:674685.Google Scholar
Nobel, P. S. 1983. Biophysical plant physiology and ecology, W. H. Freeman; San Francisco.Google Scholar
Panshin, A. J. and de Zeeuw, C. 1970. Textbook of wood technology. McGraw-Hill; New York.Google Scholar
Phillips, T. L., Peppers, R. A., and DiMichele, W. A. 1985. Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: environmental influences. Int. J. Coal Geol. 5:43109.Google Scholar
Rury, P. M. and Dickison, W. C. 1984. Structural correlations among wood, leaves and plant habit. Pp. 495540. In: White, R. and Dickison, W. C., eds. Contemporary Problems in Plant Anatomy. Academic Press; New York.Google Scholar
Schweitzer, H. J. and Matten, L. 1982. Aneurophyton germanicum and Protopteridium thompsonii from the Middle Devonian of Germany. Palaeontographica. 184B:65106.Google Scholar
Siau, J. F. 1971. Flow in wood. Syracuse Univ. Press; Syracuse.Google Scholar
Stewart, W. N. 1983. Paleobotany and the evolution of plants. Cambridge University Press; New York.Google Scholar
Ter Welle, B. G. 1985. Differences in wood anatomy of lianas and trees. (Abstract). IAWA Bull. 6:70.Google Scholar
Walton, J. 1953. An introduction to the study of fossil plants. A. & C. Black; London.Google Scholar
Weiss, F. E. 1906. On the tyloses of Rachiopteris corrugata. New Phytol. 5:8285.Google Scholar
Zimmermann, M. H. 1971. Transport in the xylem. Pp. 169220. In: Zimmermann, M. H. and Brown, C. L., eds. Trees—Structure and Function. Springer-Verlag; New York.Google Scholar
Zimmermann, M. H. 1978. Hydraulic architecture of some diffuse-porous trees. Can. J. Bot. 56:22862295.Google Scholar
Zimmermann, M. H. 1983. Xylem structure and the ascent of sap. Springer-Verlag; Berlin.Google Scholar