Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T03:59:07.183Z Has data issue: false hasContentIssue false

Computer simulations of early land plant branching morphologies: canalization of patterns during evolution?

Published online by Cambridge University Press:  08 February 2016

Karl J. Niklas*
Affiliation:
Section of Plant Biology, Division of Biological Sciences, Cornell University, Ithaca, New York 14853

Abstract

Using computer simulations and a quantitative method for describing bifurcating structures, the morphology of branching patterns seen in early land plants is analyzed. Four types or models of random branching (regular, geometric, binomial, and poisson) are shown to adequately describe the range of observed branching in most early land plants. Approximately 57% of all randomly generated computer patterns show reiterative branching events (=three successive identical modes of branching). Artificial canalization of reiterative events results in branching patterns structurally analogous with that of ancient fossil plants. Simulated phylogenetic changes among early land plant lineages, based on parsimonious transitions in branching patterns, indicate that most observed trends can be related directly to those seen in randomly generating branching patterns in which “size” is increased. The trimerophyte to progymnosperm trend in changing branching patterns is an exception, since the binomial model describing the progymnosperms has not been simulated by random processes.

While the apparent phylogenetic changes among early land plant groups do not require deterministic explanations, the transition from regular to geometric branching and the “canalization” of reiterative branching patterns may represent a grade level response to selective pressures related to mechanical design and vegetative reproduction.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Banks, H. P. 1968. The early history of land plants. Pp. 73107. In: Drake, E., ed. Evolution and Environment: A Symposium Presented on the One Hundredth Anniversary of the Foundation of Peabody Museum of Natural History at Yale University. Yale Univ. Press; New Haven.Google Scholar
Banks, H. P. 1975. Reclassification of Psilophyta. Taxon. 24:401413.CrossRefGoogle Scholar
Banks, H. P. 1979. The role of Psilophyton in the evolution of vascular plants. Rev. Palaeobot. Palynol. 29:165176.CrossRefGoogle Scholar
Beck, C. B. 1975. Current status of the Progymnospermopsida. Rev. Palaeobot. Palynol. 21:523.CrossRefGoogle Scholar
Beck, C. B. 1981. Archaeopteris and its role in vascular plant evolution. Pp. 192230. In: Niklas, K. J., ed. Paleobotany, Paleoecology, and Evolution. Vol. 1. Praeger; New York.Google Scholar
Bell, A. D. and Tomlinson, P. B. 1980. Adaptive architecture in rhizomatous plants. Bot. J. Linnean Soc. 80:125160.CrossRefGoogle Scholar
Borchert, R. and Slade, N. A. 1981. Bifurcation ratios and the adaptive geometry of trees. Bot. Gaz. 142:394401.CrossRefGoogle Scholar
Chaloner, W. G. and Sheerin, A. 1979. Devonian macrofloras. Spec. Pap. Palaeontol. 23:145161.Google Scholar
deCastro e Santos, A. 1980. Essai de Classification des Arbres Tropicaux Selon Leur Capacité de Reiteration. Biotropica. 12:187194.CrossRefGoogle Scholar
Edelin, C. 1977. Images de l'Architecture des Coniferes. Ph.D. Thesis. Universite des Sciences et Techniques du Languedoc; Montpellier.Google Scholar
Gensel, P. G. 1977. Morphologic and taxonomic relationships of the Psilotaceae relative to evolutionary lines in early land vascular plants. Brittonia. 29:1429.CrossRefGoogle Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiol. 3:2340.CrossRefGoogle Scholar
Hallé, H., Oldeman, R. A. A., and Tomlinson, P. B. 1978. Tropical Trees and Forests. Springer-Verlag; New York.CrossRefGoogle Scholar
Honda, H. 1971. Description of the form of trees by the parameters of the tree-like body; effects of the branching angle and the branch length on the shape of the tree-like body. J. Theor. Biol. 31:331338.CrossRefGoogle Scholar
Honda, H., Tomlinson, P. B., and Fisher, J. B. 1981. Computer simulation of branch interaction and regulation of unequal flow rates in botanical trees. Am. J. Bot. 68:569585.CrossRefGoogle Scholar
Horsfield, K. 1967. Morphology of the human bronchial tree. M.D. Thesis, Univ. of Birmingham; England.Google ScholarPubMed
Knoll, A. H. and Rothwell, G. W. 1981. Paleobotany: perspectives in 1980. Paleobiol. 7:735.CrossRefGoogle Scholar
McMahon, T. A. and Kronauer, R. E. 1976. Tree structures: deducing the principle of mechanical design. J. Theor. Biol. 59:443466.CrossRefGoogle ScholarPubMed
Niklas, K. J. 1977. Branching patterns and mechanical design in Paleozoic plants: a theoretic assessment. Ann. Bot. (London). 42:3339.CrossRefGoogle Scholar
Niklas, K. J. 1978. Morphometric relationships and rates of evolution among Paleozoic vascular plants. Pp. 509543. In: Hecht, M. K., Steere, W. C., and Wallace, B., eds. Evolutionary Biology, Vol. 11. Plenum Publishing Corp.; New York.CrossRefGoogle Scholar
Niklas, K. J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants: a preliminary assessment. Pp. 189. In: Hecht, M. K., Steere, W. C., and Wallace, B., eds. Evolutionary Biology, Vol. 12. Plenum Publishing Corp.; New York.Google Scholar
Niklas, K. J. and O'Rourke, T. D.(in press)Growth patterns of plants that maximize vertical growth and minimize internal stresses. Am. J. Bot.Google Scholar
Oldeman, R. A. A. 1974. L'architecture de la foret Guyanaise. Memoires de l'Office de la Recherche Scientifique et Technique, Outre-Mer, No. 73. Paris.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525542.CrossRefGoogle Scholar
Shinozaki, K. K. Y., Hozumi, K., and Kira, T. 1964. A quantitative analysis of plant form—the pipe model theory. I. Basic analysis. Jap. J. Ecol. 14:97105.Google Scholar
Thornley, J. H. M. 1977. A model of apical bifurcation applicable to trees and other organisms. J. Theor. Biol. 64:165176.CrossRefGoogle Scholar
Ueda, K. 1960. Studies on the physiology of bamboo, with reference to practical application. Res. Bureau, Science and Technics Agency, Tokyo. Reference Data No. 34.Google Scholar
White, J. 1979. The plant as a metapopulation. Annu. Rev. Syst. Ecol. 10:109145.CrossRefGoogle Scholar
Whitney, G. G. 1976. The bifurcation ratio as an indicator of adaptive strategy in woody plant species. Bull. Torrey Bot. Club. 103:6772.CrossRefGoogle Scholar
Zimmerman, W. 1952. Main results of the “Telome theory.” Paleobotanist (Lucknow). 1:456470.Google Scholar