Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T14:53:21.841Z Has data issue: false hasContentIssue false

Competition, clade replacement, and a history of cyclostome and cheilostome bryozoan diversity

Published online by Cambridge University Press:  08 April 2016

Scott Lidgard
Affiliation:
Department of Geology, Field Museum of Natural History, Chicago, Illinois 60605
Frank K. McKinney
Affiliation:
Department of Geology, Appalachian State University, Boone, North Carolina 28608
Paul D. Taylor
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD

Extract

One of the striking yet scarcely documented episodes of clade replacement in the post-Paleozoic fossil record is the decline of cyclostome Bryozoa and the corresponding, rapid diversification of cheilostome Bryozoa. These clades are closely associated morphologically and phylogenetically, and their ecological similarities have previously led to the inference that competition was a primary cause of the overt pattern of replacement. Alternatively, previous compilations of bryozoan families and genera have implied that extinctions at the Cretaceous/Tertiary boundary differentially affected cyclostomes, and thus were also an important factor in the transition.

We first evaluated the ecological context for competition between the two clades, then updated and reexamined the history of absolute family diversity for bryozoans in consecutive geologic stages from Jurassic to Recent. The resulting trends echo the patterns shown in earlier family level compilations, but indicate a slight shift in the frequency of cheilostome family originations from Late Cretaceous to early Paleogene. The relative fall in cyclostome family diversity at the Cretaceous/Tertiary boundary is significantly less than shown in earlier genus level compilations. We then assessed these various compilations of absolute diversity by analyzing species counts and percentages in 728 fossil assemblages, primarily from North America and Europe, over the same time interval. Cyclostome species overwhelmingly dominate assemblages from Jurassic through Cenomanian, then decline significantly in average percentage dominance through the Campanian. Cheilostomes are predominant in Campanian and later assemblages. Cyclostome species percentages do decrease overall through the Tertiary, but this decrease is small and non-uniform, varying around 30%, with a sharp drop in the Late Neogene. Our within-assemblage results indicate that as cheilostomes radiate, their mean species diversity, maximum diversity, and variance all increase, thereby accounting for much of the decline in average percentage of cyclostomes within assemblages. While this result does not exclude a role for competition, an hypothesis of relative decline in cyclostome species richness based on competitive extinction alone seems unlikely. Further, despite decreases in absolute species counts following end-Cretaceous extinctions, within-assemblage percentages of cheilostome or cyclostome species show only slight change relative to one another. Comparison of these and earlier diversity compilations indicates that the dynamics of bryozoan clade replacement may be perceived differently at different ecologic scales or taxonomic ranks.

Type
Research Article
Copyright
The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:10951108.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 261173174.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Banta, W. C. 1991. The Bryozoa of the Galapagos. Pp. 371389in Matthew, J., ed. Galapagos marine invertebrates. Plenum, New York.Google Scholar
Benton, M. J. 1983. Large scale replacement in the history of life. Nature (London) 302:1617.Google Scholar
Benton, M. J. 1987. Progress and competition in macroevolution. Biological Reviews 62:305338.Google Scholar
Benton, M. J. 1991. Extinction, biotic replacement, and clade interactions. Pp. 89102in Dudley, E. C., ed. The unity of evolutionary biology. Dioscorides Press, Portland, Oregon.Google Scholar
Birkelund, T., and Bromley, R. G., eds. 1979. Cretaceous-Tertiary boundary events, Vol. 1. University of Copenhagen, Copenhagen.Google Scholar
Boardman, R. S. 1984. Origin of the post-Triassic Stenolaemata (Bryozoa): a taxonomic oversight. Journal of Paleontology 58:1939.Google Scholar
Boardman, R. S., and Cheetham, A. H. 1987. Phylum Bryozoa. Pp. 497549in Boardman, R. S., Cheetham, A. H., and Rowell, A. J.Fossil invertebrates. Blackwell Scientific, Palo Alto.Google Scholar
Borg, F. 1926. Studies on recent cyclostomatous Bryozoa. Zoologiska Bidrag från Uppsala 10:181507.Google Scholar
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.Google Scholar
Buss, L. W. 1979. Habitat selection, directional growth and spatial refuges: why colonial animals have more hiding places. Pp. 459497in Larwood, G. P. and Rosen, B. R., eds. Biology and systematics of colonial organisms. Academic Press, London.Google Scholar
Buss, L. W., and Jackson, J. B. C. 1979. Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. American Naturalist 113:223234.Google Scholar
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F. 1982. On the distribution of species occurrence. Paleobiology 8:142150.Google Scholar
Cande, S. C., and Kent, D. V. 1992. A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research 97:1391713951.Google Scholar
Cheetham, A. H. 1971. Functional morphology and biofacies distribution of cheilostome Bryozoa in the Danian Stage (Paleocene) of southern Scandinavia. Smithsonian Contributions to Paleobiology 6:187.Google Scholar
Cook, P. L. 1977. Colony-wide water currents in living Bryozoa. Cahiers de Biologie Marine 18:3147.Google Scholar
Dawkins, R., and Krebs, J. R. 1979. Arms races between and within species. Proceedings of the Royal Society of London (B) 205:489511.Google Scholar
Day, R. W., and Osman, R. W. 1981. Predation by Patiria miniata (Asteroidea) on bryozoans: prey diversity may depend on the mechanism of succession. Oecologia 51:300309.Google Scholar
Dick, M. H. 1987. A proposed mechanism for chimney formation in encrusting cheilostomes. Pp. 7380in Ross, J. R. P., ed. Bryozoa: present and past. Western Washington University Press, Bellingham.Google Scholar
Donovan, S. K., ed. 1989. Mass extinctions. Columbia University Press, New York.Google Scholar
Gilinsky, N. L. 1991. The pace of taxonomic evolution. Pp. 157174in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short courses in paleontology 4. The Paleontological Society.CrossRefGoogle Scholar
Gilinsky, N. L., and Bambach, R. K. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 16:1121.Google Scholar
Gordon, D. P. 1972. Biological relationships of an intertidal bryozoan population. Journal of Natural History 6:503514.Google Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:212.Google Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology 6:383396.Google Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3:2340.Google Scholar
Hallam, A. 1990. Biotic and abiotic factors in the evolution of early Mesozoic marine molluscs. Pp. 249269in Ross, R. M. and Allmon, W. D., eds. Biotic and abiotic factors in evolution. University of Chicago Press, Chicago.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1989. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Harmelin, J.-G. 1976. Le sous-ordre des Tubuliporina (Bryozoaires Cyclostomes) en Méditerranée, écologie et systématique. Mémoires de l'Institut Océanographique Monaco 10:1326.Google Scholar
Harmelin, J.-G. 1977. Bryozoaires des Iles D'Hyéres: Cryptofaune bryozoologique des valves vides de Pinna nobilis recontrées dans les Herbiers de Posidonies. Trauvaux Scientifiques du Parc National de la Port-Cros 3:143157.Google Scholar
Harvell, C. D. 1984. Why nudibranchs are partial predators: intracolony variation in bryozoan-palatability. Ecology 65:716724.Google Scholar
Jablonski, D. 1986. Causes and consequences of mass extinctions: a comparative approach. Pp. 183229in Elliott, D. K., ed. Dynamics of extinction. Wiley, New York.Google Scholar
Jablonski, D. 1989. The biology of mass extinctions: a paleontological view. Philosophical Transactions of the Royal Society of London (B) 325:357368.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990. Onshore-offshore trends in marine invertebrate evolution. Pp. 2175in Ross, R. M. and Allmon, W. D., eds. Biotic and abiotic factors in evolution. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C. 1977. Competition on marine hard substrate: the adaptive significance of solitary and colonial strategies. American Naturalist 111:743767.Google Scholar
Jackson, J. B. C. 1981. Competitive interactions between bryozoans and other organisms. Pp. 2236in Dutro, J. T. Jr., and Boardman, R. S., eds. Lophophorates. Notes for a short course. University of Tennessee Studies in Geology 5.Google Scholar
Jackson, J. B. C. 1983. Biological determinants of present and past sessile animl distributioons. Pp. 39120in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Jackson, J. B. C. 1985. Distribution and ecology of clonal and aclonal benthic invertebrates. Pp. 297355in Jackson, J. B. C., Buss, L. W., and Cook, R. E., eds. Population biology and evolution of colonal organisms. Yale University Press, New Haven.Google Scholar
Jackson, J. B. C. 1988. Does ecology matter? Paleobiology 14:307312.Google Scholar
Jackson, J. B. C., and Cheetham, A. H. 1990. Evolutionary significance of morphospecies: a test with cheilostome Bryozoa. Science 248:521636.Google Scholar
Jackson, J. B. C., and Hughes, T. P. 1985. Adaptive strategies of coral-reef invertebrates. American Scientist 73:265274.Google Scholar
Jackson, J. B. C., and McKinney, F. K. 1990. Ecological processes and progressive macroevolution of marine clonal benthos. Pp. 173209in Ross, R. M. and Allmon, W. D., eds. Causes of evolution. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., and Winston, J. E. 1982. Ecology of cryptic coral reef communities. I. Distribution and abundance of major groups of encrusting organisms. Journal of Experimental Marine Biology and Ecology 57:135147.Google Scholar
Jebram, D. H. A. 1991. The polyphyletic origin of the “Cheilostomata” (Bryozoa). Bulletin de la Sociéte des Sciences Naturelles de l'Ouest de la France. Mémoires. Nouvelle série 1:505522.Google Scholar
Kaufman, K. W. 1981. Fitting and using growth curves. Oecologia 49:293299.Google Scholar
Kay, A. M., and Keough, M. J. 1981. Occupation of patches in the epifaunal communities on pier pillings and the bivalve Pinna bicolor at Edithburgh, South Australia. Oecologia 48:123130.Google Scholar
Kelley, P. H. 1989. Evolutionary trends within bivalve prey of Chesapeake Group naticid gastropods. Historical Biology 2:139156.Google Scholar
Keough, M. J. 1984. Dynamics of the epifauna of the bivalve Pinna bicolor: interactions among recruitment, predation, and competition. Ecology 65:677688.Google Scholar
Kier, P. M. 1982. Rapid evolution in echinoids. Palaeontology 25:19.Google Scholar
Kitchell, J. A., and Pena, D. 1984. Periodicity of extinctions in the geologic past: deterministic versus stochastic explanations. Science 226:689692.Google Scholar
Knoll, A. H. 1984. Patterns of extinction in the fossil record of vascular plants. Pp. 2168in Nitecki, M. H., ed. Extinctions. University of Chicago Press, Chicago.Google Scholar
Knoll, A. H., Nicklas, K. J., and Tiffney, B. H. 1979. Phanerozoic land-plant diversity in North America. Science 206:14001402.Google Scholar
Koch, C. F. 1978. Bias in the published fossil record. Paleobiology 4:367372.Google Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.Google Scholar
Krause, D. W. 1986. Competitive exclusion and taxonomic displacement in the fossil record: the case of rodents and multi-tuberculates in North America. Contributions to Geology, University of Wyoming, Special Paper 3:95117.Google Scholar
Larwood, G. P., ed. 1988. Extinction and survival in the fossil record. Clarendon, Oxford.Google Scholar
Larwood, G. P., Medd, A. W., Owen, D. E., and Tavener-Smith, R. 1967. Bryozoa. Pp. 379395in Harland, W. B. et al. eds. The fossil record. Geological Society of London.Google Scholar
Lidgard, S. 1981. Water flow, feeding, and colony form in an encrusting cheilostome. Pp. 135142in Larwood, G. P., and Nielsen, C., eds. Recent and fossil Bryozoa. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Lidgard, S. 1986. Ontogeny in animal colonies: a persistent trend in the bryozoan fossil record. Science 232:230232.Google Scholar
Lidgard, S. and Buckley, G. A. In press. Toward a morphological species concept in cheilostomes: phenotypic variation in Adeonellopsis yarraensis (Waters). In Ryland, J. A. and Taylor, P. D., eds. Proceedings of the Ninth International Bryozoological Association Meeting. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Lidgard, S., and Jackson, J. B. C. 1989. Growth in encrusting cheilostome bryozoans: I. Evolutionary trends. Paleobiology 15:255282.Google Scholar
Lutaud, G. 1961. Contribution à l'étude du bourgeonnement et de la croissance des colonies chez Membranipora membranacea (Linne), Bryozoaire chilostome. Annales de la Société royale Zoologique de Belgique 91:157300.Google Scholar
Lutaud, G.19893. Autozooid morphogenesis in anascan cheilostomes. Pp. 208237in Robison, R. A., ed. Treatise on invertebrate paleontology, part G (revised). Geological Society of America, Boulder, Colorado.Google Scholar
McKinney, F. K. 1986a. Evolution of erect marine bryozoan faunas: repeated success of unilaminate species. American Naturalist 128:795809.Google Scholar
McKinney, F. K. 1986b. Historical record of erect bryozoan growth forms. Proceedings of the Royal Society of London, series B 228:133148.Google Scholar
McKinney, F. K. 1988. Elevation of lophophores by exposed introverts in Bryozoa: a gymnolaemate character recorded in some stenolaemate species. Bulletin of Marine Science 43:317322.Google Scholar
McKinney, F. K. 1989. Two patterns of colonial water flow in an erect bilaminate bryozoan, the cheilostome Schizotheca serratimargo. Cahiers de Biologie Marine 30:3548.Google Scholar
McKinney, F. K. 1991. Colonial feeding currents of Exidmonea atlantica (Cyclostomata). Bulletin de la Société des Sciences Naturelles de l'Ouest de la France. Mémoires. Nouvelle série 1:263270.Google Scholar
McKinney, F. K. In press. Competitive interactions between related clades: evolutionary implications of overgrowth interactions between encrusting cyclostome and cheilostome bryozoans. Marine Biology.Google Scholar
McKinney, F. K., and Jackson, J. B. C. 1989. Bryozoan evolution. Allen and Unwin, Winchester, Mass.Google Scholar
Miller, A. I. 1990. Bivalves. Pp. 143161in McNamara, K. J., ed. Evolutionary trends. Belhaven Press, London.Google Scholar
Miller, A. I., and Sepkoski, J. J. Jr., 1988. Modeling bivalve diversification: the effect of interaction on a macroevolutionary system. Paleobiology 14:364369.Google Scholar
Müller, A. H. 1958. Lehrbuch der Paläozoologie. Band II. Invertebräten, Teil I. Protozoa-Mollusca, 1. Gustav Fischer, Jena, Germany.Google Scholar
Nitecki, M. H., ed. 1984. Extinctions. University of Chicago Press, Chicago.Google Scholar
Okamura, B. 1985. The effects of ambient flow velocity, colony size, and upstream colonies on the feeding success of Bryozoa. Part I. Bugula stolonifera Ryland, an arborescent species. Journal of Experimental Marine Biology and Ecology 83:179193.Google Scholar
Osman, R. W. 1977. The establishment and development of a marine epifaunal community. Ecological Monographs 47:3763.Google Scholar
Patterson, C., and Smith, A. B. 1987. Is the periodicity of extinctions a taxonomic artefact? Nature (London) 330:248251.Google Scholar
Ponowsky, R. A. 1973. A Jurassic cheilostome from England. Pp. 447461in Larwood, G. P., ed. Living and fossil Bryozoa. Academic Press, London.Google Scholar
Premoli Silva, I. 1977. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy II. Biostratigraphy. Geological Society of America Bulletin 88:371374.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Carnegie Museum of Natural History Bulletin 13:8591.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology 23:305322.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr., 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Raup, D. M. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Science, USA 81:801805.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology 81:525542.Google Scholar
Rosenzweig, M. L., and McCord, R. D. 19991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:202213.Google Scholar
Rosenzweig, M. L., and Taylor, J. A. 1980. Speciation and diversity in Ordovician invertebrates: filling niches quickly and carefully. Oikos 35:236243.Google Scholar
Ryland, J. S. 1970. Bryozoans. Hutchinson University Press, London.Google Scholar
Ryland, J. S. 1975. Parameters of the lophophore in relation to population structure in a bryozoan community. Pp. 363393in Barnes, H., ed. Proceedings 9th European Marine Biology Symposium. Aberdeen University Press, Aberdeen, Texas.Google Scholar
Ryland, J. S. 1976. Physiology and ecology of marine bryozoans. Advances in Marine Biology 14:285443.Google Scholar
Schopf, T. J. M. 1977. Patterns and themes of evolution among the Bryozoa. Pp. 159207in Hallam, A. H.Patterns of evolution. Elsevier Scientific Publishing Company, New York.Google Scholar
Sepkoski, J. J. Jr., 1982. A compendium of fossil marine families. Milwaukee Public Museum, Contributions in Biology and Geology 51.Google Scholar
Sepkoski, J. J. Jr., 1991. Population biology models in macroevolution. Pp. 136156in Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short courses in paleontology 4. The Paleontological Society, Knoxville, Tennessee.Google Scholar
Signor, P. W. 1978. Species richness in the Phanerozoic: an investigation of sampling effects. Paleobiology 4:394406.Google Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.Google Scholar
Silén, L., and Harmelin, J.-G. 1974. Observations on living Diastoporidae (Bryozoa Cyclostomata), with special regard to polymorphism. Acta Zoologica 55:8196.Google Scholar
Simms, M. J. 1990. The radiation of post-Paleozoic echinoderms. Pp. 287304in Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Clarendon, Oxford.Google Scholar
Skelton, P. W., Crame, J. A., Norris, N. J., and Harper, E. M. 1990. Adaptive divergence and taxonomic radiation in post-Paleozoic bivalves. Pp. 91117in Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Clarendon, Oxford.Google Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.Google Scholar
Snelling, N. J., ed. 1985. The chronology of the geologic record. Geological Society (London), Memoir 10.Google Scholar
Stanley, S. M., Signor, P. W. III, Lidgard, S., and Karr, A. F. 1981. Natural clades differ from “random” clades: simulations and analyses. Paleobiology 7:115127.Google Scholar
Stebbing, A. R. D. 1973. Competition for space between the epiphytes of Fucus serratus L. Journal of the Marine Biology Association U.K. 53:247261.Google Scholar
Steneck, R. S. 1983. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:4461.Google Scholar
Ström, R., 1977. Brooding patterns of bryozoans. Pp. 2355in Woollacott, R. M. and Zimmer, R. L., eds. Biology of bryozoans. Academic Press, New York.Google Scholar
Surlyk, F., and Johansen, M. B. 1984. End-Cretaceous brachiopod extinctions in the Chalk of Denmark. Science 223:11741177.Google Scholar
Taylor, P. D. 1988. Major radiation of cheilostome bryozoans triggered by the evolution of a new larval type? Historical Biology 1:4564.Google Scholar
Taylor, P. D. In press a. Bryozoa. In Benton, M. J., ed. The fossil record 2. Chapman and Hall, New York.Google Scholar
Taylor, P. D. In press b. The mid-Cretaceous bryozoan fauna from the Bagh Beds of central India: composition and evolutionary significance. Proceedings of the 9th conference of the International Bryozoological Association.Google Scholar
Taylor, P. D., and Larwood, G. P. 1988. Mass extinctions and the pattern of bryozoan evolution. Pp. 99119in Larwood, G. P., ed. Extinction and survival in the fossil record. Clarendon, Oxford.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos. Pp. 479625in Tevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation. Princeton University Press, Princeton.Google Scholar
Viskova, L. A. 1980. Bryozoa. Pp. 313in Development and change of invertebratets on the boundary of the Mesozoic and Cenozoic. Bryozoa, arthropods, and echinoderms. Paleontologicheskii Institute, Akademiya Nauk SSSR, Moscow. [In Russian.]Google Scholar
Voigt, E. 1983. Zur biogeographie der europäischen Oberkriede-Bryozoenfauna. Zitteliana 10:317347.Google Scholar
Voigt, E. 1986. The Bryozoa of the Cretaceous-Tertiary boundary. Pp. 329342in Nielsen, C. and Larwood, G. P., eds. Bryozoa: Ordovician to Recent. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Voigt, E. 1991. Mono- or polyphyletic evolution of cheilostomatous bryozoan divisions? Bulletin de la Société des Sciences Naturelles de l'Ouest de la France. Mémoires. Nouvelle série 1:505522.Google Scholar
Walker, T. D., and Valentine, J. W. 1984. Equilibrium models of evolutionary species diversity and the number of empty niches. American Naturalist 124:887899.Google Scholar
Wilkinson, L. 1990. Systat: the system for statistics. Systat, Inc., Evanston, Illinois.Google Scholar
Winston, J. E. 1977. Distribution and ecology of estuarine ectoprocts: a critical review. Chesapeake Science 18:3457.Google Scholar
Winston, J. E. 1978. Polypide morphology and feeding behavior in marine ectoprocts. Bulletin of Marine Science 28:131.Google Scholar
Winston, J. E. 1979. Current-related morphology and behavior in some Pacific coast bryozoans. Pp. 247268in Larwood, G. P. and Abbott, M. B., eds. Advances in bryozoology. Academic Press, London.Google Scholar
Woollacott, R. M., and Zimmer, R. L., eds. 1977. Biology of bryozoans. Academic Press, New York.Google Scholar
Accordi, B. 1947. Nuove forme di Briozoi eocenici. Studi trentini 25:3110.Google Scholar
Annoscia, E. 1966. I Briozoi del Pliocene Superiore di Capocello (Collezione Zangheri). Memorie Museo Civico di Storia Naturale di Verona 14:105175.Google Scholar
Annoscia, E. 1968. I Briozoi mesomiocenici di Punta Sa Calada Bianca (Sardegna meridionale), nota preliminare. International Union of Geological Sciences, Committee on Mediterranean Neogene Stratigraphy, session 4, Proceedings, Part 2. Giornale di Geologia (Museo Geologico di Bologna, Annali), Series 2, 35:8393.Google Scholar
Balavoine, P. 1957. Nouveaux Gisements de Bryozoaires dans le Lutétien du Bassin de Paris. Bulletin de Muséum National D'Histoire Naturelle, Series 2, 29:1190.Google Scholar
Berthelsen, O. 1962. Cheilostome Bryozoa in the Danian Deposits of East Denmark. Danmarks Geologiske Undersølgelse II 83:1290.Google Scholar
Blake, S. F. 1935. United States Geological Survey: unpublished report, number 24837.Google Scholar
Braga, G. 1963. I Briozoi del Terziario veneto. Bollettino della Societa Paleontologica Italiana 2:1655.Google Scholar
Braga, G. 1966. I Briozoi del l'Oligocene di Possagne (Trevigiano occidentale). Bollettino della Societa Paleontologica Italiana 4:216244.Google Scholar
Braga, G. 1968a. Remarques sur les Bryozoaires de l'Eocène de Possagno. P. 70in Cita, M. B., ed. Guide de l'excursion en Italie. Comité Français de Stratigraphie, Colloque sur l'Eocène, May 18–26, Milan.Google Scholar
Braga, G. 1968b. Bryozoaires. Pp. 4145in Cita, M. B., ed. Guide de l'excursion en Italie. Comité Français de Stratigraphie, Colloque sur l'Eocène, May 18–26, Milan.Google Scholar
Braga, G. 1968c. Notizie preliminari su una fauna a Briozoi del Miocene inferiore del Trevigiano occidentale. International Union of Geological Sciences, Committee on Mediterranean Neogene Stratigraphy, Session 4, Proceedings, Part 2. Giornale di Geologia (Museo Geologico di Bologna, Annali), Series 2, 35:95103.Google Scholar
Braga, G., and Bignot, G. 1986. Les Bryozoaires de la formation d'ǒge Paléocène (Danien probable) du Mont Aimé (Marne, Bassin Parisien). Geobios 19:279293.Google Scholar
Buge, E. 1948. Les Bryozoaires du Savignéen (Helvétien) de Touraine Essai de Paléogéographie du Néogéne de l'ouest de la France. Muséum National d'Histoire Naturelle, Mémoires, Nouvelle série 26:6396.Google Scholar
Buge, E. 1956. Les Bryozoaires du Pliocène du Cap Bon (Tunisie). Tunisia, Ministere des Travaux Publics Service des Mines, de l'Industrie de l'Energie, Annales des Mines et de la Geologie 17:197.Google Scholar
Buge, E. 1957. Les Bryozoaires du Néogène de l'ouest de la France. Mémoires du Muséum National D'Histoire Naturelle 6:1436.Google Scholar
Buge, E. 1964. Les Bryozoaires du Paléogène du Bassin de Paris (Région Parisienne et Cotentin): état actuel de nos connaissances et perspectives d'avenir. France, Bureau de Recherches Géologiques et Minieres, Mémoires, Paris 28:10491065.Google Scholar
Buge, E. 1973. Les Bryozoaires Miocènes du nord-ouest de l'Allemagne. Paläeontologische Zeitschrift 47:3253.Google Scholar
Buge, E., and Debourle, E. 1977. Écologie de la faune de bryozoaires d'une plage des environs de Tripoli (Libye). Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 1:321377.Google Scholar
Burton, E. S. J. 1929. The Horizons of Bryozoa (Polyzoa) in the Upper Eocene Beds of Hampshire. Quarterly Journal of the Geological Society of London 85:223241.Google Scholar
Busk, G. 1859. A monograph of the fossil Polyzoa of the Crag. Palaeontographical Society, London.Google Scholar
Canu, F. 1897a. Bryozoaires du Cénomanian des Janières (Sarthe). Societé Géologique de France, Bulletin, Series 3, 25:146157.Google Scholar
Canu, F. 1897b. Bryozoaires du Cénomanian de Saint-Calais (Sarthe). Societe Géologique de France, Bulletin, Series 3, 25:737754.Google Scholar
Canu, F. 1902. Bryozoaires Fossiles. Societé Géologique de France, Bulletin, Series 4, 2:1014.Google Scholar
Canu, F. 1907. Bryozoaires des terrains Tertiaires des environs de Paris. Annales de Paléontologie 2:5789, 137160.Google Scholar
Canu, F. 1908. Bryozoaires des terrains Tertiaires des environs de Paris. Annales de Paléontologie 3:61104.Google Scholar
Canu, F. 1909. Bryozoaires des terrains Tertiaires des environs de Paris. Annales de Paléontologie 4:101140.Google Scholar
Canu, F., and Bassler, R. S. 1920. North American Early Tertiary Bryozoa. United States National Museum Bulletin 106:1879.Google Scholar
Canu, F. 1923. North American Later Tertiary and Quarternary Bryozoa. United States National Museum Bulletin 125:1302.Google Scholar
Canu, F. 1926a. The fauna of the Ripley Formation on Coon Creek, Tennessee. United States Geological Survey Professional Paper 137:139.Google Scholar
Canu, F. 1926b. Studies on the cyclostomatous Bryozoa. Proceedings of United States Natural History Museum 67:1124.Google Scholar
Canu, F. 1928. Les Bryozoaires de Maroc et de Mauritanie. Mémoires de la Societé des Sciences Naturelles du Maroc 18:611, 7985.Google Scholar
Canu, F. 1929. Bryozoaires Éocènes de la Belgique. Verhandelingen van het Koninklijk Naturhistorisch Museum van Belgie 39:168.Google Scholar
Canu, F. 1933. The bryozoan fauna of the Vincentown Limesand. United States National Museum Bulletin 165:1108.Google Scholar
Cheetham, A. H. 1954. A new Early Cretaceous cheilostome bryozoan from Texas. Journal of Paleontology 28:177184.Google Scholar
Cheetham, A. H. 1963. Late Eocene zoogeography of the eastern Gulf Coast region. Geological Society of America Memoirs 91:1113.Google Scholar
Cheetham, A. H. 1966. Cheilostomatous polyzoa from the Upper Brackelsham Beds (Eocene) of Sussex. Bulletin of the British Museum (Natural History) Geology 13:1115.Google Scholar
Cheetham, A. H. 1971. Functional morphology and biofacies distribution of cheilostome Bryozoa in the Danian Stage (Paleocene) of southern Scandinavia. Smithsonian Contributions to Paleobiology, Number 6. Smithsonian Institution Press, Washington, D.C.Google Scholar
Cheetham, A. H. 1974. Taxonomic significance of autozooid size and shape in some early multiserial cheilostomes from the Gulf Coast of the U.S.A. Lyons, Faculte des Sciences, Laboratoires de Geologie, Documents, Hors Series 3:547564.Google Scholar
Cheetham, A. H. 1977. Notes on Vincentown Bryozoa. International Bryozoology Association Cenozoic Field Trip, September 18–20, 1977.Google Scholar
Cheetham, A. H., and Håkansson, E. 1972. Preliminary report on Bryozoa (Site 117). Pp. 432441in Laughton, A. S., Berggren, W. A., eds. Initial reports of the Deep Sea Drilling Project, Vol. 12, U.S. Government Printing Office, Washington, D.C.Google Scholar
Cheetham, A. H., and Sandberg, P. A. 1964. Quaternary Bryozoa from Louisiana Mudlumps. Journal of Paleontology 38:10131046.Google Scholar
David, L. 1961. Les Bryozoaires de l'Aalénien du Mont-d'Or Lyonnais. France, Bureau de Recherches Géologiques et Minières, Mémoires 4:201205.Google Scholar
David, L., Mongereau, N., and Pouyet, S. 1970. Bryozoaires du Néogène du Bassin du Rhone; gisements burdigaliens de Taulignan (Drome). Lyons, Faculté des Sciences, Laboratories de Géologie, Documents 40:97175.Google Scholar
David, L. 1972. Bryozoaires du Néogène du Bassin du Rhone; gisements burdigaliens de Mus (Gard). Lyons, Faculté des Sciences, Laboratoires de Géologie, Documents 52:1118.Google Scholar
David, L., and Pouyet, S. 1968. Les Bryozoaires cheilostomes du Chattien de la région de Kassel (Hesse, Allemagne). Geobios 1:81102.Google Scholar
Delamette, M., and Walter, B. 1984. Les faunes de Bryozoaires de l'Aptien Superieur et de l'Albien en Haute-Savoie et dans l'Ain. Revue de Paléobiologie 3:2751.Google Scholar
Faura y Sans, M. 1917. Caracterizacion de la fauna briozoaria del Maestrichiense en el Monte Perdido (Pirineos centrales del Alto Aragón). Boletin de la Real Sociedad Española de Historia Natural 17:191194.Google Scholar
Fischer, J. C. 1969. Géologie, paléontologie et paléoécologie du Bathonien au sud-ouest du Massif Ardennais. Muséum National d'Historie Naturelle, Mémoires, Series C, Sciences de la Terre, Paris 20:1329.Google Scholar
Frey, R. W., and Larwood, G. P. 1971. Pyripora shawi: new bryozoan from the Upper Cretaceous of Kansas (Niobrara Chalk) and Arkansas (Brownstone Marl). Journal of Paleontology 45:969976.Google Scholar
Ghiurca, V. 1964a. Contributii la cunoaşterea faunei de briozoare din Transilvania (V) Briozoarela tortoniene de la Lopadea Veche (Raionul Aiud). Studia Universitats Babes-Bolyai, Series geologia-geographica 1:4550.Google Scholar
Ghiurca, V. 1964b. Briozoarela tortoniene de la Talmacel si Cisnadioara-Sibiu (VIII). Studia Universitats Babes-bolyai, Series geologia-geographica 1:99104.Google Scholar
Ghiurca, V., and Nicorici, E. 1963. Contributii la cunoasterea faunei de bryozoare din Transilvania (IV) Bryozoarela tortoniene de la Preuteasa-Tusa (Bazinul Salaj). Studia Universitats Babes-Bolyai, Series geologia-geographica 1:5156.Google Scholar
Gregory, J. W. 1893. On the British Paleogene Bryozoa. Zoological Society of London, Transcripts 13:219279.Google Scholar
Gregory, J. W. 1896. The Jurassic Bryozoa. In Catalogue of the fossil Bryozoa in the Department of Geology, British Museum (Natural History), London.Google Scholar
Herrera, Y. A. 1985. Pliocene Cheilostomata in the Isthmus of the Tehuantepec Region (Mexico). Pp. 145151in Nielsen, C. and Larwood, G. P., eds. Bryozoa: Ordovician to Recent. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Hertlein, L. G., and Grant, U. S. 1960. The geology and paleontology of the marine Pliocene of San Diego, California. Memoirs of the San Diego Society of Natural History 2/2a:71133.Google Scholar
Hillmer, G. 1971. Bryozoen (Cyclostomata) aus dem Unter-Hauterive von Nordwestdeutschland. Hamburg, Geologisches Staatsinsititut, Mitteilungen 40:5106.Google Scholar
Jurgensen, T. 1968. Cheilostome Bryozoa from the Danian deposits at Vallensbaek, Denmark. Dansk Geologisk Forening Meddelelser, Copenhagen 18:187204.Google Scholar
Kendall, P. F. 1931. The Read Crag of Walton-on-the-Naze. Geological Magazine 68:405420.Google Scholar
Labracherie, M. 1971. Évolution générale des assemblages de Bryozoaires dans l'Éocéne du Bassin Nord-Aquitain. Societé Géologique de France, Compte Rendu Sommaire des Seances, Paris 1971:368390.Google Scholar
Lagaaij, R. 1952. The Pliocene Bryozoa of the Low Countries and their bearing on the marine stratigraphy of the North Sea Region. Mededelingen van de Geologische Stichting, Serie C 5:1233.Google Scholar
Lagaaij, R. 1969. Paleocene bryozoa from a boring in Surinam. Geologie en Mijnbouw 48:165175.Google Scholar
Lecointre, G. 1912. Sur quelques bryozoaires nouveaux ou peu connus de Cénomanien du Mans. Societé Géologique de France, Bulletin, Series 4 12: 349–335.Google Scholar
Malecki, J. 1958. Mszywioły Tortoñskie Z Gliwic Starych. Rocznik Polskiego Towarzystwa Geologicznego 28:169194.Google Scholar
Malecki, J. 1964. On two new genera of Bryozoa cheilostomata from the Tortonian of Poland. Acta Palaeontologica Polonica 9:499507.Google Scholar
Malecki, J. 1966. Mszywioły z zagłȩbién po skałotoczach z Miocenu Skotnik koło buska. Rocznik Polskiego Towarzystwa Geologicznego 36:481494.Google Scholar
Marsson, T. 1887. Die Bryozoen der Weissen Schreibkreide der Insel Rugen. Paläeontologische Abhandlungen 4:1110.Google Scholar
Maryanska, T. 1969. Bryozoa from the Uppermost Maastrichtian and Palaeocene deposits of the Middle Vistula Gorge near Pulawy. Prace Museum Ziemi 1:86126.Google Scholar
McGuirt, J. H. 1941. Louisiana Tertiary Bryozoa. State of Louisiana Department of Conservation Geological Bulletin 21:1177.Google Scholar
Pergens, E. 1893. Bryozoaires du Senonien de Sainte-Paterne, de Lavardin et de La Ribochère. Procès-Verbaux de la Societé Belge de Géologie 6:200216.Google Scholar
Pitt, L. J., and Taylor, P. D. 1990. Cretaceous Bryozoa from the Faringdon Sponge Gravel (Aptian) of Oxfordshire. Bulletin of the British Musem (Natural History) Geology 4:61152.Google Scholar
Plaziat, J. C., and Balavoine, P. 1964. Bryozoaires du “Sparnacien” des Corbières et du Plantaurel. Societé Géologique de France, Bulletin, Series 7 6:39.Google Scholar
Pohowsky, R. A. 1973. A Jurassic cheilostome from England. Pp. 447461in Larwood, G. P., ed. Living and fossil bryozoa. Academic Press, London.Google Scholar
Poluzzi, A. 1975. I briozoi cheilostomi del Pliocene della Val d'Arda (Piacenza, Italia). Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 21:177.Google Scholar
Prantl, F. 1938. Lower Turonian bryozoa from Predboj (Bohemia). Rozpravy Statniho Geologickeho Ustavu Ceskoslovenske Republiky 8:3971.Google Scholar
Reguant, S. 1961. Los Briozoos del Neógeno español. Notas y Comunicaciones del Instituto Geológico y Minero de España 62:215244.Google Scholar
Scolaro, R. 1968. Paleoecology of the Bryozoa of the Chipola Formation, Clarksville area, Florida. Dissertation Abstract, Tulane University, New Orleans.Google Scholar
Shaw, N. G. 1967. Cheilostomata from gulfian (Upper Cretaceous) rocks of southwestern Arkansas. Journal of Paleontology 41:13931432.Google Scholar
Souaya, F. J. 1965. On the Bryozoa of Gebel Gharra (Cairo-Suez Road) and other Miocene sections in Egypt. Journal of Paleontology 39:11291144.Google Scholar
Taylor, P. D. 1981. Bryozoa from the Jurassic Portland Beds of England. Palaeontology 24:863875.Google Scholar
Taylor, P. D., and Sequeiros, L. 1982. Toarcian bryozoans from Belchite in north-east Spain. Bulletin of the British Museum (Natural History) Geology 32:117129.Google Scholar
Thoelen, M. J. 1968. The Bryozoa fauna from the sands of Deurne, Upper Miocene, at Deurne (Antwerpen, Belgium). Atti Societa Italiana di Scienze Naturali e Museo Civico di Storia Naturale Milano 108:361368.Google Scholar
Thomas, H. D., and Larwood, G. P. 1956. Some “uniserial” membraniporine polyzoan genera and a new American Albian species. Geological Magazine 93:369376.Google Scholar
Toots, H., and Cutler, J. F. 1962. Bryozoa from the “Mesaverde” Formation (Upper Cretaceous) of southeastern Wyoming. Journal of Paleontology 36:8186.Google Scholar
Turner, R. F. 1973. The paleoecologic and paleobiogeographic implications of the Maastrichtian Cheilostomata (Bryozoa) of the Navesink. Unpublished Ph.D. thesis. Rutgers University, New Jersey.Google Scholar
Vavra, N. 1978. Bryozoen aus dem Paleozän von Michelstetten (Waschbergzone, Niederösterreich). Austria, Geologische Bundesanstalt, Verhandlungen, Vienna 2:97108.Google Scholar
Vavra, N. 1979a. Die Bryozoenfaunen des österreichischen Tertiärs. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 157:366392.Google Scholar
Vavra, N. 1979b. Bryozoa from the Miocene of Styria (Austria). Pp. 585609in Larwood, G. P. and Abbott, M. B., eds. Advances in bryozoology. The Systematics Association Special Volume 13, Academic Press, London and New York.Google Scholar
Vavra, N. 1981. Bryozoa from the Eggenburgian (Lower Miocene, Central Paratethys) of Austria. Pp. 273280in Larwood, G. P. and Nielsen, C., eds. Recent and fossil Bryozoa. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Vavra, N. 1983. Bryozoen aus dem Unteren Meeressand (Mitteloligozän) von Eckelsheim (Mainzer Becken, Bundesrepublik Deutschland). Mainzer Naturwissenschaftliches Archiv 21:67123.Google Scholar
Vavra, N. 1984. A littoral bryozoan assemblage from the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica 34:223237.Google Scholar
Vavra, N. 1989. Bryozoen aus dem Badenien (Mittelmiozän) von Weissenegg bei Wildon (Steiermark). Annalen des Naturhistorischen Museums, Wien, Serie A 90:83102.Google Scholar
Vine, G. R. 1890. A monograph on the Polyzoa (Bryozoa) of the Red Chalk of Hunstation. The Quarterly Journal of the Geological Society of London 46:454485.Google Scholar
Voigt, E. 1930. Morphologische und stratigraphische untersuchungen über die Bryozoenfauna der oberen Kreide. I. Teil. Die cheilostomen Bryozoen der jungeren Oberkreide in Nordwestdeutschland, im Balktikum und in Holland. Leopoldina 6:379579.Google Scholar
Voigt, E. 1949. Cheilostome bryozoen aus den Quadratenkreide Nordwestdeutschlands. Hamburg, Geologisches Staatsinstitut, Mitteilungen 19:149.Google Scholar
Voigt, E. 1951. Das Maastricht-Vorkommen von Ilten bei Hannover und seine Fauna. Hamburg, Geologisches Staatsinstitut, Mitteilungen 20:15109.Google Scholar
Voigt, E. 1957. Bryozoen aus dem Kreidetuff von St. Symphorien bei Ciply (Ob. Maastrichtien). Institut Royal des Sciences Naturelles de Belgique Bulletin 33:148.Google Scholar
Voigt, E. 1964. A Bryozoan fauna of Dano-Montian age from Boryszew and Sochaczew in central Poland. Acta Palaeontologica Polonica 9:419480.Google Scholar
Voigt, E. 1967a. Oberkreide-Bryozoen aus den asiatischen Gebieten der USSR. Hamburg, Geologisches Staatsinstitut, Mitteilungen 36:595.Google Scholar
Voigt, E. 1967b. Ökologische und stratigraphische Untersuchungen an Bryozoen der oberen Kreide. Deutsche Gesellschaft für Geologische Wissenschaften, Berichte, Reihe A, Geologie und Paläontologie. Berlin, 12:479491.Google Scholar
Voigt, E. 1968. On the Cretaceous age of the so-called Jurassic cheilostomatous polyzoa (bryozoa). A contribution to the knowledge of the polyzoa-fauna of the Maastrichtian in the Cotentin (Manche). Bulletin of the British Museum (Natural History) Geology 17:145.Google Scholar
Voigt, E. 1970. Bryozoen führende Danien-Feuersteingerölle aus dem Miozän der Niederlausitz. Geologie 19:83105.Google Scholar
Voigt, E. 1971. The cheilostomate nature of the alleged cyclostomatous bryozoan genus Dysnoetopora. Lethaia 4:79100.Google Scholar
Voigt, E. 1975. Bryozoen aus dem Campan von Misburg bei Hannover. Bericht der Naturhistorischen Gesellschaft zu Hannover 119:235277.Google Scholar
Voigt, E. 1979. Bryozoen der Kunrader Schichten in Süd-Limburg. Grondboor en Hammer 2:3388.Google Scholar
Voigt, E. 1981. Upper Cretaceous bryozoan-seagrass association in the Maastrichtian of the Netherlands. Pp. 281298in Larwood, G. P. and Nielsen, C., eds. Recent and fossil Bryozoa. Olsen and Olsen, Fredensborg, Denmark.Google Scholar
Voigt, E. 1987. Die Bryozoen des Klassischen Dano Montiens von Mons (Belgien). Service Géologique de Belgique: Mémoires pour servir à l'Explication des Cartes Géologiques et Minières de la Belgique 17:1161.Google Scholar
Voigt, E. and Viaud, J. M. 1983. Bryozoaires du Sénonien de Vendée (Bassin du Challans-Commequiers). Géologie Méditerranéenne 10:219228.Google Scholar
Walter, B. 1967a. Révision de la faune de Bryozoaires du Bajocien Supérieur de Shipton Gorge (Dorset, Grande-Bretagne). Lyons, Faculté des Sciences, Laboratoire de Géologie, Travaux 14:4352.Google Scholar
Walter, B. 1967b. Les bryozoaires Hauteriviens de la partie Occidentale du Départment de l'Ain. Lyons, Faculté des Sciences, Laboratoire des Géologie, Travaux 14:5362.Google Scholar
Walter, B. 1969. Les Bryozoaires Jurassiques en France. Etudé systematique. Rapports avec la stratigraphie et la paléoecologie. Lyons, Faculté des Sciences, Laboratories de Géologie, Documents 35:1328.Google Scholar
Walter, B. 1972. Les bryozoaires Neocomiens du Jura Suisse et Français. Geobios 5:277354.Google Scholar
Walter, B. 1977. Un gisement de Bryozoaires Aptiens dans le Gard. Geobios 10:325336.Google Scholar
Walter, B., and Alméras, Y. 1981. Bryozoaires et brachiopodes des ‘Calcaires Bajociens a Bryozoaires’ des Causses (France) et leur paléoécologie. Geobios 14:361387.Google Scholar
Walter, B., Arnaud-Vanneau, A., Arnaud, H., Busnardo, R., and Ferry, S. 1975. Les Bryozoaires Barrémo-Aptiems du sud-est de la France; gisements et paléoécologie, biostratigraphie. Geobios 8:83117.Google Scholar
Walter, B., and Busnardo, R. 1971. Un gisement Aptien de Bryozoaires dans les Alpes Francaises (vercors, isere). Geobios 4:8799.Google Scholar
Walter, B., and Clavel, B. 1979. Nouveaux apports a la connaissance de la faune aptienne de Bryozoaires du sud-est de la France. Geobios 12:819837.Google Scholar
Waters, A. W. 1890. North-Italian Bryozoa. The Quarterly Journal of the Geological Society of London. Winter 1891:138.Google Scholar
Whittlesea, Paul. S. 1991. The Maastrichtian in Norfolk. Bulletin of the Geological Society of Norfolk 40:3351.Google Scholar
Ziko, A. 1985. Eocene Bryozoa from Egypt. A paleontological and paleoecological study. Tübinger Mikro-Paläontologische Mitteilungen 4:1183.Google Scholar