Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:47:29.008Z Has data issue: false hasContentIssue false

Cohort analysis of generic survivorship

Published online by Cambridge University Press:  08 April 2016

David M. Raup*
Affiliation:
Department of Geological Sciences and Center for Evolution and Paleobiology, University of Rochester; Rochester, New York 14627

Abstract

Cohort analysis provides an effective method of analysing taxonomic survivorship in the fossil record where large data sets are available. An analysis of the stratigraphic ranges of about 8,500 fossil genera and subgenera shows that survivorship patterns are substantially the same throughout the Phanerozoic. These patterns are used to calculate an average value for mean species duration among fossil invertebrates (11.1 Myr.). Also, the extra extinctions near the Permo-Triassic boundary are shown to be equivalent to about 85 Myr of normal, background extinction.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bailey, N. T. J. 1964. The Elements of Stochastic Processes. 249 pp. John Wiley & Sons, Inc.; New York.Google Scholar
Durham, J. W. 1971. The fossil record and the origin of the Deuterostomata. North Am. Paleontol. Conv., Chicago, 1969, Proc., H:11041132.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper & Co.; San Francisco, Calif.Google Scholar
Feller, W. 1968. An Introduction to Probability Theory and its Applications. Vol. I. 509 pp. John Wiley & Sons, Inc.; New York.Google Scholar
Jagers, P. 1975. Branching Processes with Biological Applications. 268 pp. John Wiley & Sons, Inc.; New York.Google Scholar
Kendall, D. G. 1948. On the generalized “birth-and-death” process. Ann. Math. Statist. 19:115.CrossRefGoogle Scholar
Kennedy, W. J. 1977. Ammonite evolution. Pp. 251304. In: Hallam, A., ed. Patterns of Evolution. Elsevier Scientific Publ. Co.; Amsterdam.Google Scholar
Keyfitz, N. 1968. Introduction to the Mathematics of Population. 450 pp. Addison-Wesley Publ. Co.; Reading, Mass.Google Scholar
Kurtén, B. 1954. Population dynamics—a new method in paleontology. J. Paleontol. 28:286292.Google Scholar
Lambert, R. St. J. 1971. The pre-Pleistocene Phanerozoic time scale—a review. Pp. 931. In: Harland, W. B. and Francis, E. H., eds. The Phanerozoic Time-scale, A Supplement (Part 1). Geol. Soc. London. Spec. Publ. 5.Google Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The Theory of Island Biogeography. 203 pp. Princeton University Press; Princeton, New Jersey.Google Scholar
Moore, R. C. and Teichert, C., eds. 1953–date. Treatise on Invertebrate Paleontology. Geol. Soc. Am. and Univ. of Kans. Boulder, Colorado and Lawrence, Kansas.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science. 177:10651071.Google Scholar
Raup, D. M. 1975. Taxonomic survivorship curves and Van Valen's Law. Paleobiology. 1:8296.CrossRefGoogle Scholar
Raup, D. M. 1977. Removing sampling biases from taxonomic diversity data. J. Paleontol. 51(Supplement to No. 2, Pt. III):21.Google Scholar
Raup, D. M. and Stanley, S. M. 1978. Principles of Paleontology. 2nd Ed.W. H. Freeman & Co.; San Francisco, Calif.(In press)Google Scholar
Reddingius, J. 1971. Gambling for existence. Acta Biotheoretica. 20(Supplement):1208.Google Scholar
Rickards, R. B. 1977. Patterns of evolution in the graptolites. Pp. 333358. In: Hallam, A., ed. Patterns of Evolution. Elsevier Scientific Publ. Co.; Amsterdam.Google Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic versus morphological rates of evolution: influence of morphologic complexity. Paleobiology. 1:6370.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1975. Stratigraphic biases in the analysis of taxonomic survivorship. Paleobiology. 1:343355.Google Scholar
Simpson, G. G. 1952. How many species? Evolution. 6:342.CrossRefGoogle Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia University Press; New York.CrossRefGoogle Scholar
Simpson, G. G. 1960. The history of life. Pp. 117180. In: Tax, S., ed. Evolution After Darwin. Vol. 1. The Evolution of Life. Univ. of Chicago Press; Chicago, Ill.Google Scholar
Stanley, S. M. 1973. Effects of competition on evolution, with special reference to bivalve mollusks and mammals. Syst. Zool. 22:486506.Google Scholar
Teichert, C. 1956. How many fossil species? J. Paleontol. 30:967969.Google Scholar
Valentine, J. W. 1970. How many marine invertebrate fossil species? J. Paleontol. 44:410415.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:130.Google Scholar
Williams, A. and Hurst, J. M. 1977. Brachiopod evolution. Pp. 79122. In: Hallam, A., ed. Patterns of Evolution. Elsevier Scientific Publ. SCo.; Amsterdam.Google Scholar
Yasuda, N., Cavalli-Sforza, L. L., Skolnick, M., and Moroni, A. 1974. The evolution of surnames: an analysis of their distribution and extinction. Theoret. Pop. Biol. 5:123142.CrossRefGoogle ScholarPubMed
Yule, G. Udny. 1924. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. R. Soc. London, Philos. Trans. (B). 213:2187.Google Scholar