Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T12:02:30.346Z Has data issue: false hasContentIssue false

Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia

Published online by Cambridge University Press:  08 February 2016

John P. Grotzinger
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. E-mail: [email protected]
Wesley A. Watters
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. E-mail: [email protected]
Andrew H. Knoll
Affiliation:
Botanical Museum, Harvard University, Cambridge, Massachusetts 02138. E-mail: [email protected]

Abstract

Reefs containing abundant calcified metazoans occur at several stratigraphic levels within carbonate platforms of the terminal Proterozoic Nama Group, central and southern Namibia. The reef-bearing strata span an interval ranging from approximately 550 Ma to 543 Ma. The reefs are composed of thrombolites (clotted internal texture) and stromatolites (laminated internal texture) that form laterally continuous biostromes, isolated patch reefs, and isolated pinnacle reefs ranging in scale from a meter to several kilometers in width. Stromatolite-dominated reefs occur in depositionally updip positions within carbonate ramps, whereas thrombolite-dominated reefs occur broadly across the ramp profile and are well developed as pinnacle reefs in downdip positions.

The three-dimensional morphology of reef-associated fossils was reconstructed by computer, based on digitized images of sections taken at 25-micron intervals through 15 fossil specimens and additionally supported by observations of over 90 sets of serial sections. Most variation observed in outcrop can be accounted for by a single species of cm-scale, lightly calcified goblet-shaped fossils herein described as Namacalathus hermanastes gen. et sp. nov. These fossils are characterized by a hollow stem open at both ends attached to a broadly spheroidal cup marked by a circular opening with a downturned lip and six (or seven) side holes interpreted as diagenetic features of underlying biological structure. The goblets lived atop the rough topography created by ecologically complex microbial-algal carpets; they appear to have been sessile benthos attached either to the biohermal substrate or to soft-bodied macrobenthos such as seaweeds that grew on the reef surface. The phylogenetic affinities of Namacalathus are uncertain, although preserved morphology is consistent with a cnidarian-like bodyplan. In general aspect, these fossils resemble some of the unmineralized, radially symmetric taxa found in contemporaneous sandstones and shales, but do not appear to be closely related to the well-skeletonized bilaterian animals that radiated in younger oceans. Nama reefs demonstrate that biohermal associations of invertebrates and thrombolite-forming microorganisms antedate the Cambrian Period.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aitken, J. D. 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology 37:11631178.CrossRefGoogle Scholar
Ax, P. 1989. Basic phylogenetic systematization of the Metazoa. Pp. 229245in Fernholm, B., Bremer, K., and Jornvall, H., eds. The hierarchy of life. Elsevier, Amsterdam.Google Scholar
Bartley, J. K., Pope, M., Knoll, A. H., Semikhatov, M. A., and Petrov, P. Yu. 1998. A Vendian-Cambrian boundary succession from the northwestern margin of the Siberian Platform: stratigraphy, palaeontology, chemostratigraphy and correlation. Geological Magazine 135:473494.CrossRefGoogle ScholarPubMed
Bengtson, S. 1994. The advent of animal skeletons. Pp. 412425in Bengtson, S., ed. Early life on Earth. (Nobel Symposium No. 84.)Columbia University Press, New York.Google Scholar
Bengtson, S., and Zhao, Y. 1992. Predatorial borings in late Precambrian mineralized exoskeletons. Science 257:367369.CrossRefGoogle ScholarPubMed
Bengtson, S., Morris, S. Conway, Cooper, B. J., Pell, P. A., and Runnegar, B. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9:1364.Google Scholar
Bova, J. P., and Read, J. F. 1987. Incipiently drowned facies within a cyclic peritidal ramp sequence, Early Ordovician Chepultepec interval, Virginia Appalachians. Geological Society of America Bulletin 98:714727.2.0.CO;2>CrossRefGoogle Scholar
Brasier, M. D. 1975. An outline history of seagrass communities. Palaeontology 18:681702.Google Scholar
Brasier, M., Green, O., and Shields, G. 1997. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology 25:303306.2.3.CO;2>CrossRefGoogle Scholar
Brusca, R. C., and Brusca, G. J. 1990. Invertebrates. Sinauer, Sunderland, Mass.Google Scholar
Cecile, M. P., and Campbell, F. H. A. 1978. Regressive stromatolite reefs and associated facies, Middle Goulburn group (Lower Proterozoic), in Kilohigok Basin, N.W.T.: an example of environmental control of stromatolite form. Bulletin of Canadian Petroleum Geology 26:237267.Google Scholar
Chen, M., Xiao, Z., and Yuan, X. 1994. A new assemblage of megafossils—Miaohe biota from the upper Sinian Doushantuo Formation, Yangtze Gorges. Acta Palaeontologica Sinica 33:391403.Google Scholar
Morris, S. Conway, 1998. The crucible of creation: the Burgess Shale and rise of animals. Oxford University Press, Oxford.Google Scholar
Morris, S. Conway, Mattes, B. W., and Chen, M. 1990. The early skeletal organism Cloudina: new occurrences from Oman and possibly China. American Journal of Science 290-A:245260.Google Scholar
Debrenne, F., Lafuste, J., and Zhuravlev, A. 1990. Coralomorphes et spongiomorphs l'aube du Cambrien. Bulletin du Museum National d'Histoire Naturelle, 4e Série, C 12:1739.Google Scholar
Eernisse, D. J., Albert, J. S., and Anderson, F. E. 1992. Annelida and Arthropoda are not sister taxa: a phylogenetic analysis of spiralian metazoan morphology. Systematic Biology 41:305330.CrossRefGoogle Scholar
Fauvel, P., 1923. Bulletin de la Société Zoologique du France 47:424.Google Scholar
Fedonkin, M. A. 1990. Systematic description of the Vendian metazoa. Pp. 71120in Sokolov, B. S. and Iwanowski, A. B., eds. The Vendian System, Vol. 1. Springer, Berlin.Google Scholar
Feldmann, M., and McKenzie, J. 1998. Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201212.CrossRefGoogle Scholar
Fritsch, F. E. 1965. The structure and reproduction of the algae, Vol. I. Cambridge University Press, Cambridge.Google Scholar
Gaucher, C., and Sprechmann, P. 1999. Upper Vendian skeletal fauna of the Arroyo del Solidado Group, Uruguay. Beringeria 23:5591.Google Scholar
Gehling, J., and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacaran fauna of South Australia. Journal of Paleontology 70:185195.CrossRefGoogle Scholar
Germs, G. J. B. 1972a. New shelly fossils from the Nama Group, South West Africa. American Journal of Science 272:752761.CrossRefGoogle Scholar
Germs, G. J. B. 1972b. The stratigraphy and paleontology of the lower Nama Group, South West Africa. Bulletin, Precambrian Research Unit 12:1250. University of Cape Town, Cape Town.Google Scholar
Germs, G. J. B. 1972c. Trace fossils from the Nama Group, South West Africa. Journal of Paleontology 46:864870.Google Scholar
Germs, G. J. B. 1974. The Nama Group in South West Africa and its relationship to the Pan African Geosyncline. Journal of Geology 82:301317.CrossRefGoogle Scholar
Germs, G. J. B. 1983. Implications of a sedimentary facies and depositional environmental analysis of the Nama Group in South West Africa/Namibia. In Miller, R.M., ed. Evolution of the Damara Orogen. Geological Society of South Africa Special Publication 11:89114.Google Scholar
Glaessner, M. F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. Journal of the Geological Society, London 132:259275.CrossRefGoogle Scholar
Golubic, S., and Hofmann, H. J. 1976. Comparison of modern and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. Journal of Paleontology 50:10741082.Google Scholar
Graham, L. E., and Wilcox, L. W. 2000. Algae. Prentice-Hall, Upper Saddle River, N. J.Google Scholar
Grant, S. W. F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290-A:261294.Google ScholarPubMed
Gresse, P. G., and Germs, G. J. B. 1993. The Nama foreland basin: sedimentation, major unconformity bounded sequences and multisided active margin advance. Precambrian Research 63:247272.CrossRefGoogle Scholar
Grotzinger, J. P. 1986. Evolution of an early Proterozoic passive margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada. Journal of Sedimentary Petrology 56:831847.Google Scholar
Grotzinger, J. P. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F., eds. Controls on carbonate platform and basin development. Society of Economic Paleontologists and Mineralogists Special Publication 44:79106.CrossRefGoogle Scholar
Grotzinger, J. P.In press. Facies and paleoenvironmental setting of thrombolite-stromatolite reefs, terminal Proterozoic Nama Group (ca. 550–543 Ma), central and southern Namibia. Communications of the Geological Survey of Namibia, Vol. 13 (Henno Martin Volume).Google Scholar
Grotzinger, J. P., and James, N. P. 2000. Carbonate sedimentation and diagenesis in the evolving Precambrian world. Society of Economic Paleontologists and Mineralogists Special Publication 65 (in press).CrossRefGoogle Scholar
Grotzinger, J. P., and Knoll, A. H. 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Science 27:313358.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., Bowring, S., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598604.CrossRefGoogle Scholar
Hahn, G., and Pflug, H. D. 1985. Die Cloudinidae n. fam., Kalk-Rohren aus dem Vendium und Unter-Kambrium. Senckenbergiana Lethaea 65:413451.Google Scholar
Hoffman, P. F. 1969. Proterozoic paleocurrents and depositional history of the east arm fold belt, Great Slave Lake. Canadian Journal of Earth Science 6:441462.CrossRefGoogle Scholar
Hofmann, H. J. 1975. Stratiform Precambrian stromatolites, Belcher Islands, Canada: relations between silicified microfossils and microstructure. American Journal of Science 275:11211132.CrossRefGoogle Scholar
Hofmann, H. J., Grey, K., Hickman, A. H., and Thorpe, R. I. 1999. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin 111:12561262.2.3.CO;2>CrossRefGoogle Scholar
Ivanov, A. V. 1963. Pogonophora. Translated and edited by D. B. Carlisle. Academic Press, New York.Google Scholar
Kennard, J. M., and James, N. P. 1986. Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1:492503.CrossRefGoogle Scholar
Knoll, A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science 256:622627.CrossRefGoogle ScholarPubMed
Kruse, P. D., Zhuravlev, A Yu., and James, N. P. 1995. Primordial metazoan-calcimicrobial reefs: Tommotian (Early Cambrian) of the Siberian Platform. Palaios 10:291321.CrossRefGoogle Scholar
Lee, J. J., Hutner, S. H., and Bovee, E. C., eds. 1985. An illustrated guide to the Protozoa. Society of Protozoologists, Lawrence Kans.Google Scholar
Lesh-Laurie, G. E., and Suchy, P. E. 1991. Cnidaria: Scyphozoa and Cubozoa. Pp. 185266in Harrison, F. W. and Westfall, J. A., eds. Microscopic anatomy of invertebrates, Vol. 2. Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York.Google Scholar
Li, G., Xue, Y.-s., and Zhou, C.-m. 1997. Late Proterozoic tubular fossils from the Doushnatuo Formation of Weng'an, Guizhou, China. Palaeoworld 7(1997):2937.Google Scholar
Little, C. T. S., Herrington, R. J., Haymon, R. M., and Danelian, T. 1999. Early Jurassic hydrothermal vent community from the Franciscan Complex, San Rafael mountains, California. Geology 27:167170.2.3.CO;2>CrossRefGoogle Scholar
Martin, H. 1965. The Precambrian geology of South West Africa and Namaqualand. Rustica, Wynberg, South Africa.Google Scholar
McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S. 1994. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta 58:529532.CrossRefGoogle Scholar
McHugh, D. 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proceedings of the National Academy of Sciences USA 94:80068009.CrossRefGoogle ScholarPubMed
Miller, R. M. 1983. The Pan-African Damara Orogen of South West Africa/Namibia. Pp. In Miller, R. M., ed. Evolution of the Damara Orogen. Geological Society of South Africa Special Publication 11:431515.Google Scholar
Narbonne, G. M., and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30:647676.Google Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology 71:953967.CrossRefGoogle ScholarPubMed
Nielsen, C., Scharff, N., and Eibye-Jacobsen, D. 1996. Cladistic analysis of the animal kingdom. Biological Journal of the Linnean Society 57:385410.CrossRefGoogle Scholar
Pflug, H. D. 1970a. Zur fauna der Nama-Schichten in Südwest Afrika. I. Pteridinia, Bau und systematische Zugehorigkeit. Palaeontographica, Abteilung A 134:226262.Google Scholar
Pflug, H. D. 1970b. Zur fauna der Nama-Schichten in Südwest Afrika. II. Rangidae, Bau und systematische Zugehorigkeit. Palaeontographica, Abteilung A 135:198231.Google Scholar
Pflug, H. D. 1972. Zur fauna der Nama-Schichten in Südwest Afrika. II. Erniettomorpha, Bau und systematische Zugehorigkeit. Palaeontographica, Abteilung A 139:134170.Google Scholar
Pratt, B., and James, N. P. 1986. The St. George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology 33:313343.CrossRefGoogle Scholar
Qian, Y., and Bengtson, S., 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishuchunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Richter, R., 1955. Die Altesten Fossilen Süd-Afrikas. Senckenbergiana Lethaea 36:243289.Google Scholar
Riding, R., and Zhuravlev, A. Yu. 1995. Structure and diversity of oldest sponge-microbe reefs: Lower Cambrian, Aldan River, Siberia. Geology 23:649652.2.3.CO;2>CrossRefGoogle Scholar
Runnegar, B. N. 1992. Proterozoic fossils of soft-bodied metazoans (Ediacaran faunas). Pp. 9991007in Schopf, J. W. and Klein, C., eds. The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Ruppert, E. E., and Barnes, R. D. 1994. Invertebrate zoology, 6th ed. Saunders College Publishing, Fort Worth.Google Scholar
Saylor, B. Z., and Grotzinger, J. P. 1996. Reconstruction of important Proterozoic-Cambrian boundary exposures through the recognition of thrust deformation in the Nama Group of southern Namibia. Communications of the Geological Survey of Namibia 11:112.Google Scholar
Saylor, B. Z., Grotzinger, J. P., and Germs, G. J. B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), Southwest Namibia. Precambrian Research 73:153171.CrossRefGoogle Scholar
Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P., and Urban, F. 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research 66:11781195.Google Scholar
Sergeev, V. N., Knoll, A. H., and Grotzinzger, J. P. 1995. Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, northern Siberia. Paleontological Society Memoir 39:137.Google Scholar
Smith, O. A. 1998. Terminal Proterozoic carbonate platform development: stratigraphy and sedimentology of the Kuibis Subgroup (ca. 550–548 Ma), Northern Nama Basin, Namibia. . Massachusetts Institute of Technology, Cambridge.Google Scholar
Soja, C. M. 1994. Significance of Silurian stromatolite-sphinctozoan reefs. Geology 22:355358.2.3.CO;2>CrossRefGoogle Scholar
Sokolov, B. S., 1997. Essays on the advent of the Vendian System. KMK Scientific, Moscow. [In Russian.]Google Scholar
Soreghan, G. S., and Giles, K. A. 1999. Facies character and stratal responses to accommodation in Pennsylvanian bioherms, western Orogrande Basin, New Mexico. Journal of Sedimentary Research 69:893908.CrossRefGoogle Scholar
Steele-Petrovich, H. M., and Bolton, T. E. 1998. Morphology and paleoecology of a primitive mound-forming tubicolous polychaete from the Ordovician of the Ottawa Valley, Canada. Palaeontology 41:125145.Google Scholar
Steiner, M. 1994. Die neoproterozoischen Megaalgen Südchinas. Berliner Geowissenschaftliche, Abhandlungen E 15:1146.Google Scholar
Turner, E. C., Narbonne, G. M., and James, N. P. 1993. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology 3:259262.2.3.CO;2>CrossRefGoogle Scholar
Turner, E. C., James, N. P., and Narbonne, G. M. 1997. Growth dynamics of Neoproterozoic calcimicrobial reefs, Mackenzie Mountains, northwest Canada. Journal of Sedimentary Petrology 67:437450.Google Scholar
Turner, E. C., Narbonne, G. M., and James, N. P. 2000. Framework composition of early Neoproterozoic calcimicrobial reefs and associated microbialites, Mackenzie Mountains, N. W. T. In Grotzinger, J. P. and James, N. P., eds. Carbonate sedimentation and diagenesis in the evolving Precambrian world. Society of Economic Paleontologists and Mineralogists Special Publication 65 (in press).CrossRefGoogle Scholar
Walter, M. R., and Heys, G. R. 1984. Links between the rise of the metazoa and the decline of stromatolites. Precambrian Research 29:149174.CrossRefGoogle Scholar
Watters, W. A. 2000. Digital reconstruction of fossil morphologies, Nama Group, Namibia. . Massachusetts Institute of Technology, Cambridge.Google Scholar
Watters, W. A., and Grotzinger, J. P.In press. Digital reconstruction of calcified early metazoans, terminal proterozoic Nama Group, Namibia. Paleobiology 27.2.0.CO;2>CrossRefGoogle Scholar
Werner, B., 1967. Morphologie, Systematik, und Lebensgeschichte von Stephenoscyphus (Scyphozoa Coronatae) sowie seine Bedeutung für die Evolution der Scyphozoa. Zoologischer Anzeiger 30(Suppl.):297319.Google Scholar
Westbroek, P., and Marin, F. 1998. A marriage of bone and nacre. Nature 392:861862.CrossRefGoogle ScholarPubMed
Wray, J. L. 1977. Calcareous algae. Elsevier, Amsterdam.Google Scholar
Xiao, S., Knoll, A. H., and Yuan, X. 1998. Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the Neoproterozoic Doushantuo Formation, South China. Journal of Paleontology 72:10721086.CrossRefGoogle Scholar