Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T15:10:45.718Z Has data issue: false hasContentIssue false

The biomolecular paleontology of continental fossils

Published online by Cambridge University Press:  26 February 2019

Derek E. G. Briggs
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, United Kingdom. E-mail: [email protected]
Richard P. Evershed
Affiliation:
School of Chemistry, University of Bristol, BS8 1TS, United Kingdom. E-mail: [email protected] and E-mail: [email protected]
Matthew J. Lockheart
Affiliation:
School of Chemistry, University of Bristol, BS8 1TS, United Kingdom. E-mail: [email protected] and E-mail: [email protected]

Abstract

The preservation of compounds of biological origin (nucleic acids, proteins, carbohydrates, lipids, and resistant biopolymers) in terrigenous fossils and the chemical and structural changes that they undergo during fossilization are discussed over three critical stratigraphic levels or “time slices.” The youngest of these is the archeological record (e.g., <10 k.y. B.P.), when organic matter from living organisms undergoes the preliminary stages of fossilization (certain classes of biomolecule are selectively preserved while others undergo rapid degradation). The second time slice is the Tertiary. Well-preserved fossils of this age retain diagenetically modified biomarkers and biopolymers for which a product-precursor relationship with the original biological materials can still be identified. The final time slice is the Carboniferous. Organic material of this age has generally undergone such extensive diagenetic degradation that only the most resistant biopolymers remain and these have undergone substantial modification. Trends through time in the taphonomy and utility of ancient biomolecules in terrigenous fossils affect their potential for studies that involve chemosystematic and environmental data.

Type
Research Article
Copyright
Copyright © 2000 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A., and Briggs, D. E. G. 1991. The taphonomy of soft-bodied animals. Pp. 120140 in Donovan, S. K., ed. The processes of fossilization. Belhaven, London.Google Scholar
Ambrose, S. H. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archeological Science 17:431451.Google Scholar
Arens, N. C., Jahren, A. H., and Amundsen, R. 2000. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26:137155.Google Scholar
Aveling, E. M., and Heron, C. 1998. Identification of birch bark tar at the Mesolithic site of Star Carr. Ancient Biomolecules 2:6980.Google Scholar
Bada, J. L., Wang, X. S., and Hamilton, H. 1999. Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Philosophical Transactions of the Royal Society of London B 354:7787.Google Scholar
Bartram, K. M., Jeram, A. J., and Seiden, P. A. 1987. Arthropod cuticles in coal. Journal of the Geological Society, London 144:513517.Google Scholar
Beck, C. W., and Borromeo, C. 1990. Ancient pine pitch: technological perspectives from a Hellenistic shipwreck. Pp. 5158 in Biers, A. R. and McGovern, P. E., eds. Organic contents of ancient vessels: materials analysis and archeological investigation. MASCA Research Papers in Science and Archaeology, Vol. 7. University Museum of Archaeology and Anthropology, University of Pennsylvania, Philadelphia.Google Scholar
Beck, C. W., Smart, C. J., and Ossen, D. J. 1989. Residues and linings in ancient Mediterranean transport amphoras. ACS Symposium Series 220:369380.Google Scholar
Beck, C. W., Stout, E. C., and Janne, P. A. 1998. The pyrotechnology of pine tar and pitch inferred from quantitative analyses by gas chromatography/mass spectrometry and carbon-13 nuclear magnetic resonance spectroscopy. Pp. 181190 in Brzezi'nski, W. and Peotrowski, W., eds. Proceedings of the first international symposium on wood tar and pitch, pp. 181190. Domu Wydawniczym Pawla Dabrowskiego, Warsaw.Google Scholar
Behrensmeyer, A. K., and Hook, R. W. 1992. Paleoenvironmental contexts and taphonomic modes. Pp. 15136 in Behrensmeyer, A. K., Camuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time. University of Chicago Press, Chicago.Google Scholar
Bland, H. A., van Bergen, P. F., Carter, J. F., and Evershed, R. P. 1998. Early diagenetic transformations of proteins and polysaccharides in archaeological plant remains. Pp. 113131 in Stankiewicz and van Bergen 1998.Google Scholar
Boëda, E., Connan, J., Dessort, D., Muhesen, S., Mercier, N., Valadas, H., and Tisnerat, N. 1996. Bitumen as a hafting material on Middle Palaeolithic artefacts. Nature 380:336338.Google Scholar
Boon, J. J., Stout, S. A., Genuit, W., and Spackman, W. 1989. Molecular paleobotany of Nyssa endocarps. Acta Botanica Neerlandica 38:391404.Google Scholar
Briggs, D. E. G. 1999. Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philosophical Transactions of the Royal Society of London B 354:717.Google Scholar
Briggs, D. E. G., and Eglinton, G. 1994. Chemical traces of ancient life. Chemistry in Britain 31:907912.Google Scholar
Briggs, D. E. G., and Kear, A. J. 1993. Decay and preservation of polychaetes: taphonomic thresholds in soft-bodied organisms. Paleobiology 19:107135.Google Scholar
Briggs, D. E. G., Kear, A. J., Baas, M., de Leeuw, J. W., and Rigby, S. 1995. Decay and composition of hemichordate Rhabdopleura: implications for the taphonomy of graptolites. Lethaia 28:1523.Google Scholar
Briggs, D. E. G., Evershed, R. P., and Stankiewicz, B. A. 1998a. The molecular preservation of fossil arthropod cuticles. Ancient Biomolecules 2:135146.Google Scholar
Briggs, D. E. G., Stankiewicz, B. A., Meischner, D., Bierstedt, A., and Evershed, R. P. 1998b. Taphonomy of arthropod cuticles from Pliocene lake sediments, Willershausen, Germany. Palaios 13:386394.Google Scholar
Brown, T. A. 1999. How ancient DNA may help in understanding the origin and spread of agriculture. Philosophical Transactions of the Royal Society of London B 354:8998.Google Scholar
Brown, W. V., Watson, J. A. L., and Lacey, M. J. 1996. A chemotaxonomic survey using cuticular hydrocarbons of some species of the Australian harvester termite genus Drepanotermes (Isoptera: Termitidae). Sociobiology 27:199221.Google Scholar
Buckley, S. A., Stott, A. W., and Evershed, R. P. 1999. Studies of organic residues from ancient Egyptian mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. Analyst 124:443452.Google Scholar
Bull, I. D., Simpson, I. A., van Bergen, P. F., and Evershed, R. P. 1999. Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. Antiquity 73:8687.Google Scholar
Charters, S., Evershed, R. P., Goad, L. J., Heron, C., and Blinkhorn, P. W. 1993. Identification of an adhesive used to repair a Roman jar. Archaeometry 35:91101.Google Scholar
Collins, M. J., Waite, E. R., and van Duin, A. C. T. 1999. Predicting protein decomposition: the case of aspartic-acid racemization kinetics. Philosophical Transactions of the Royal Society of London B 354:5164.Google Scholar
Collinson, M. E., van Bergen, P. M., Scott, A. C., and de Leeuw, J. W. 1994. The oil-generating potential of plants from coal and coal-bearing strata through time: a review with new evidence from Carboniferous plants. In Scott, A. C. and Fleet, A. J., eds. Coal and coal-bearing strata as oil-prone source rocks. Geological Society of London Special Publication 77:3170.Google Scholar
Collinson, M. E., Mösle, B., Finch, P., Scott, A. C., and Wilson, R. 1998. The preservation of plant cuticle in the fossil record: a chemical and microscopical investigation. Ancient Biomolecules 2:251265.Google Scholar
Connan, J. 1999. Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations. Philosophical Transactions of the Royal Society of London B 354:3350.Google Scholar
Connan, J., Nissenbaum, A., and Dessort, D. 1992. Molecular archaeology: export of Dead Sea asphalts to Canaan and Egypt in the Chalcolithic-early bronze age (4th–3rd millennium BC). Geochimica Cosmochimica Acta 56:27432759.Google Scholar
Cranwell, P. A., Eglinton, G., and Robinson, N. 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. II. Organic Geochemistry 11:513527.Google Scholar
de Leeuw, J. W., and Largeau, C. 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. Pp. 2372 in Engel and Macko 1993.Google Scholar
de Leeuw, J. W., van Bergen, P. F., van Aarssen, B. G. K., Gatellier, J.-P. L. A., Sinninghe Damsté, J. S., and Collinson, M. E. 1991. Resistant biomacromolecules as major contributors to kerogen. Philosophical Transactions of the Royal Society of London B 333:329337.Google Scholar
de Leeuw, J. W., Frewin, N. L., van Bergen, P. F., Sinninghe Damsté, J. S., and Collinson, M. E. 1995. Organic carbon as a palaeoenvironmental indicator in the marine realm. In Bosence, D. W. J. and Allison, P. A., eds. Marine palaeoenvironmental analysis from fossils. Geological Society of London Special Publication 83:4371.Google Scholar
Derenne, S., Largeau, C., Casadevall, E., Raynaud, J. F., Berkaloff, C., and Rousseau, B. 1991. Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: origin of ultralaminae. Geochimica Cosmochimica Acta 55:10411050.Google Scholar
Dudd, S. N., and Evershed, R. P. 1998. Direct demonstration of milk as an element of archaeological economies. Science 282:14781481.Google Scholar
Dudd, S. N., and Evershed, R. P. 1999. Unusual triterpenoid fatty acyl ester components of archaeological birch bark tars. Tetrahedron Letters 40:359362.Google Scholar
Dyson, W. G., and Herbin, G. A. 1968. Studies on plant cuticular waxes. IV. Leaf wax alkanes as a taxonomic discriminant for cypresses grown in Kenya. Phytochemistry 7:13391344.Google Scholar
Eganhouse, R. P. 1997. Molecular markers in environmental geochemistry. ACS Symposium Series No. 671. American Chemical Society, Washington D.C. Google Scholar
Eglinton, G., and Logan, G. A. 1991. Molecular preservation. Philosophical Transactions of the Royal Society of London B 333:315328.Google Scholar
Eglinton, G., Gonzalez, A. G., Hamilton, R. J., and Raphael, R. A. 1962. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry 1:89102.Google Scholar
Engel, M. H., and Macko, S. A. 1993. Organic geochemistry. Plenum, New York.Google Scholar
Evershed, R. P. 1993. Biomolecular archaeology and lipids. World Archaeology 25:7493.Google Scholar
Evershed, R. P., and Bethell, P. H. 1996. Application of multimolecular biomarker techniques to the identification of faecal material in archaeological soils and sediments. ACS Symposium Series 625:157172.Google Scholar
Evershed, R. P., and Connolly, R. C. 1988. Lipid preservation in Lindow Man. Naturwissenschaften 75:143145.Google Scholar
Evershed, R. P., and Connolly, R. C. 1994. Post-mortem transformations of sterols in bog body tissues. Journal of Archaeological Science 21:577583.Google Scholar
Evershed, R. P., Jerman, K., and Eglinton, G. 1985. Pine wood origin for pitch from the Mary-Rose. Nature 314:528530.Google Scholar
Evershed, R. P., Turner-Walker, G., Hedges, R. E. M., Tuross, N., and Leyden, A. 1995. Preliminary results for the analysis of lipids in ancient bone. Journal of Archaeological Science 22:277290.Google Scholar
Evershed, R. P., van Bergen, P. F., Peakman, T. M., Leigh-Firbank, E. C., Horton, M. C., Edwards, D., Biddle, M., Kjolbye-Biddle, B., and Rowley-Conwy, P. A. 1997a. Archaeological frankincense. Nature 390:667668.Google Scholar
Evershed, R. P., Mottram, H. R., Dudd, S. N., Charters, S., Stott, A. W., Lawrence, G. J., Gibson, A. M., Conner, A., Blinkhorn, P. W., and Reeves, V. 1997b. New criteria for the identification of animal fats preserved in archaeological pottery. Naturwissenschaften 84:402406.Google Scholar
Evershed, R. P., Bland, H. A., van Bergen, P. F., Carter, J. F., Horton, M. C., and Rowley-Conwy, P. A. 1997c. Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science 278:432433.Google Scholar
Evershed, R. P., Dudd, S. N., Charters, S., Mottram, H., Stott, A. W., Raven, A., van Bergen, P. F., and Bland, H. A. 1999. Lipids as carriers of anthropogenic signals from prehistory. Philosophical Transactions of the Royal Society of London B 354:1931.Google Scholar
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Molecular Biology 40:503537.Google Scholar
Flannery, M. F., Stott, A. W., Briggs, D. E. G., and Evershed, R. P. In press. Chitin in the fossil record: identification and quantification of D-glucosamine. Organic Geochemistry.Google Scholar
Gülaçar, F. O., Susini, A., and Koln, M. 1990. Preservation and post-mortem transformations of lipids in samples from a 4000-year-old Nubian mummy. Journal of Archaeological Science 17:691695.Google Scholar
Hagelberg, E., Kayser, M., Nagy, M., Roewer, L., Zimdahl, H., Krawczak, M., Lió, P., and Schiefenhövel, W. 1999. Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers. Philosophical Transactions of the Royal Society of London B 354:141152.Google Scholar
Hatcher, P. G., Wenzel, K. A., and Cody, G. D. 1994. Coalification reactions of vitrinite derived from coalified wood: transformations to rank of bituminous coal. In Mukhopadhyay, P. K. and Dow, W. G., eds. Reevaluation of vitrinite reflectance as a maturity indicator. ACS Symposium Series 570:112135. American Chemical Society, Washington, D.C.Google Scholar
Hedges, J. I., Cowie, G. L., Ertel, J. R., Barbour, R. J., and Hatcher, P. G. 1985. Degradation of carbohydrates and lignins in buried woods. Geochimica. Cosmochimica Acta 49:701711.Google Scholar
Hemsley, A. R., Barrie, P. J., and Scott, A. C. 1995. 13C solid state NMR spectroscopy of fossil sporopollenins: variation in composition independent of diagenesis. Fuel 74:10091012.Google Scholar
Hemsley, A. R., Scott, A. C., Barrie, P. J., and Chaloner, W. G. 1996. Studies of fossil and modern spore wall biomacromolecules using 13C solid state NMR. Annals of Botany 78:8394.Google Scholar
Herbin, G. A., and Robins, P. A. 1969. Patterns of variation and development in leaf wax alkanes. Phytochemistry 8:19851998.Google Scholar
Holloway, P. J. 1981. The chemical constitution of plant cutins. Pp. 132 in Cutler, D. F., Alvin, K. L., and Price, C. E., eds. The plant cuticle. Academic Press, London.Google Scholar
Huang, Y., Lockheart, M. J., Collister, J. W., and Eglinton, G. 1995. Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation: hydrocarbons and alcohols. Organic Geochemistry 23:785801.Google Scholar
Huang, Y., Lockheart, M. J., Logan, G. A., and Eglinton, G. 1996. Isotope and molecular evidence for the diverse origins of carboxylic acids in leaf fossils and sediments from the Miocene Lake Clarkia deposit, Idaho, U.S.A. Organic Geochemistry 24:289299.Google Scholar
Jones, M. K., Briggs, D. E. G., Eglinton, G., and Hagelberg, R., eds. 1999. Molecular information and prehistory. Philosophical Transactions of the Royal Society of London B 354:1159.Google Scholar
Katzenberg, M. A., Schwarcz, H. P., Knyf, M., and Melbye, F. J. 1995. Stable isotope evidence for maize horticulture and palaeodiet in southern Ontario, Canada. American Antiquity 60:335350.Google Scholar
Killops, S. D., and Killops, V. J. 1993. An introduction to organic geochemistry. Longman Group, Harlow, England.Google Scholar
Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., and Pääbo, S. 1997. Neandertal DNA sequences and the origin of modern humans. Cell 90:1930.Google Scholar
Kupchan, S. M., Karim, A., and Marcks, C. 1969. Tumour inhibitors. XL VIII. Taxodione and taxodone, two novel diterpenoid quinone methide tumour inhibitors from Taxodium distichum. Journal of Organic Chemistry 34:39123918.Google Scholar
Kürschner, W. M. 1996. Leaf stomata as biosensors of palaeoat-mospheric CO2 levels. Ph.D. dissertation. LPP Foundation, Utrecht.Google Scholar
Largeau, C., Derenne, S., Casadevall, E., Berkaloff, C., Corolleur, M., Lugardon, B., Raynaud, J. F., and Connan, J. 1990. Occurrence and origin of “ultralaminar” structures in “amorphous” kerogens of various source rocks and oil shales. Organic Geochemistry 16:889895.Google Scholar
Leavitt, S. W., and Long, A. 1984. Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature 311:145147.Google Scholar
Lockheart, M. J. 1997. Isotope compositions and distributions of individual compounds as indicators for environmental conditions: comparisons between contemporary and Clarkia fossil leaves. Ph.D. thesis. University of Bristol, Bristol, U.K. Google Scholar
Lockheart, M. J., van Bergen, P. F., and Evershed, R. P. 1997. Variations in the stable carbon isotope compositions of individual lipids from the leaves of modern angiosperms: implications for the study of higher land plant derived sedimentary organic matter. Organic Geochemistry 26:137153.Google Scholar
Lockheart, M. J., van Bergen, P. F., and Evershed, R. P. In press. Chemotaxonomic classification of fossil leaves from the Miocene Clarkia lake deposit, Idaho, USA, based on n-alkyl lipid distributions and principal component analyses. Organic Geochemistry.Google Scholar
Logan, G. A. 1992. Biogeochemistry of the Miocene lacustrine deposit, Clarkia, northern Idaho, U.S.A. Ph.D. thesis, University of Bristol, Bristol, England.Google Scholar
Logan, G. A., and Eglinton, G. 1994. Biogeochemistry of the Miocene lacustrine deposit at Clarkia, northern Idaho, U.S.A. Organic Geochemistry 21:857870.Google Scholar
Logan, G. A., Boon, J. J., and Eglinton, G. 1993. Structural biopolymer preservation in Miocene leaf fossils from the Clarkia site, northern Idaho. Proceedings of the National Academy of Sciences USA 90:22462250.Google Scholar
Logan, G. A., Smiley, C. J., and Eglinton, G. 1995. Preservation of fossil leaf waxes in association with their source tissues, Clarkia, northern Idaho, USA. Geochimica Cosmochimica Acta 59:751763.Google Scholar
Logan, K. J., and Thomas, B. A. 1987. The distribution of lignin derivatives in fossil plants. New Phytologist 105:157173.Google Scholar
Lowenstein, J. M., and Scheuenstuhl, G. 1991. Immunological methods in molecular palaeontology. Philosophical Transactions of the Royal Society of London B 333:375380.Google Scholar
Loy, T. H. 1993. The artifact as site: an example of the biomolecular analysis of organic residues on prehistoric tools. World Archaeology 25:4463.Google Scholar
Lücke, A., Helle, G., Schleser, G. H., Figueiral, I., Mosbrugger, V., Jones, T. P., and Rowe, N. P. 1999. Environmental history of the German Lower Rhine Embayment during the Middle Miocene as reflected by carbon isotopes in brown coal. Palaeogeography, Palaeoclimatology, Palaeoecology 154:339352.Google Scholar
MacHugh, D. E., Troy, C. S., McCormick, F., Olsaker, I., Eythórsdóttir, E., and Bradley, D. G. 1999. Early medieval cattle remains from a Scandinavian settlement in Dublin: genetic analysis and comparison with extant breeds. Philosophical Transactions of the Royal Society of London B 354:99109.Google Scholar
Mackenzie, A. S., Patience, R. L., Maxwell, J. R., Vandenbroucke, M., and Durand, B. 1980. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. I. Changes in the configuration of the acyclic isoprenoid alkanes, steranes and triterpanes. Geochimica Cosmochimica Acta 45:13451355.Google Scholar
Mackenzie, A. S., Brassell, S. C., Eglinton, G., and Maxwell, J. R. 1982. Chemical fossils: the geological fate of steroids. Science 217:491504.Google Scholar
Macko, S. A., Engel, M. H., Andrusevich, V., Lubec, G., O'Connell, T. C., and Hedges, R. E. M. 1999. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philosophical Transactions of the Royal Society of London B 354:6576.Google Scholar
Maffei, M. 1994. Discriminant analysis of leaf wax alkanes in the Lamiaceae and four other plant families. Biochemical Systematics and Ecology 22:711728.Google Scholar
Matthews, D. E., and Hayes, J. M. 1978. Isotope-ratio monitoring gas chromatography mass spectrometry. Analytical Chemistry 50:14651473.Google Scholar
Meinzer, F. C., Rundel, P. W., Goldstein, G., and Sharifi, M. R. 1992. Carbon isotope composition in relation to leaf gas exchange and environmental conditions in Hawaiian Metrosideros polymorpha populations. Oecologia 91:305311.Google Scholar
Merriwether, D. A. 1999. Freezer anthropology: new uses for old blood. Philosophical Transactions of the Royal Society of London B 354:121130.Google Scholar
Mills, J. S., and White, R. 1994. The organic chemistry of museum objects, 2d ed. Butterworths, London.Google Scholar
Mimura, M. R. M., Salatino, M. L. F., Salatino, A., and Baumgratz, J. F. A. 1998. Alkanes from foliar epicuticular waxes of Huberia species: taxonomic implications. Biochemical Systematics and Ecology 26:581588.Google Scholar
Mösle, B., Finch, P. F., Collinson, M. E., and Scott, A. C. 1997. Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography-mass spectrometry and electron microscopy. Journal of Analytical and Applied Pyrolysis 40–41:585597.Google Scholar
Niklas, K. J., and Giannasi, D. E. 1985. The paleobiochemistry of fossil angiosperm floras. Part II: Diagenesis of organic compounds with particular reference to steroids. Pp. 175183 in Smiley 1985.Google Scholar
Niklas, K. J., Brown, J. R., and Santos, R. 1985. Ultrastructural states of preservation in Clarkia angiosperm leaf tissues: implications on modes of fossilization. Pp. 143159 in Smiley 1985.Google Scholar
Nip, M., Tegelaar, E., de Leeuw, J. W., Schenck, P. A., and Holloway, P. J. 1986a. Analysis of modern and fossil plant cuticles by Curie-point pyrolysis-gas chromatography and Curie-point pyrolysis-gas chromatography-mass spectrometry. Recognition of a new, highly aliphatic and resistant biopolymer. Organic Geochemistry 10:769778.Google Scholar
Nip, M., Tegelaar, E., de Leeuw, J. W., Schenck, P. A., and Holloway, P. J. 1986b. A new, non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73:579585.Google Scholar
O'Donoghue, K., Brown, T. A., Carter, J. and Evershed, R. P. 1994. Detection of nucleotides bases in ancient seeds using gas chromatography/mass spectrometry and gas chromatography/mass spectrometry/mass spectrometry. Rapid Communications in Mass Spectrometry 8:503508.Google Scholar
O'Donoghue, K., Brown, T. A., Carter, J. F., and Evershed, R. P. 1996a. Application of high performance liquid chromatography/mass spectrometry with electrospray ionisation to the detection of DNA nucleosides in ancient seeds. Rapid Communications in Mass Spectrometry 10:495500.Google Scholar
O'Donoghue, K., Clapham, A., Evershed, R. P., and Brown, T. 1996b. Remarkable preservation of biomolecules in ancient radish seeds. Proceedings of the Royal Society of London B 263:541547.Google Scholar
Opsahl, S., and Benner, R. 1995. Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications. Geochimica Cosmochimica Acta 59:48894904.Google Scholar
Osborne, R., Salatino, M. L. F., and Salatino, A. 1989. Alkanes of foliar epicuticular waxes of the genus Encephalartos. Phytochemistry 28:30273030.Google Scholar
Otto, A., Walther, H., and Puttmann, W. 1997. Sesqui- and diterpenoid biomarkers preserved in Taxodium-rich Oligocene oxbow lake clays, Weisselster basin, Germany. Organic Geochemistry 26:105115.Google Scholar
Ourisson, G., Albrecht, P., and Rohmer, M. 1979. The hopanoids, palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry 51:709729.Google Scholar
Pate, F. D. 1994. Bone chemistry and palaeodiet. Journal of Archaeological Method and Theory 1:161209.Google Scholar
Pearcy, R. W., and Pfitsch, W. A. 1991. Influence of sunflecks on the δ13C of Adenocaulon bicolor plants occurring in contrasting forest understory microsites. Oecologia 86:457462.Google Scholar
Poinar, H. N. 1998. Preservation of DNA in the fossil record. Pp. 132146 in Stankiewicz and van Bergen 1998.Google Scholar
Poinar, H. N., Höss, M., Wang, S. X., Bada, J. L., and Pääbo, S. 1996. Amino acid racemization and the preservation of ancient DNA. Science 272:864866.Google Scholar
Poinar, H. N., Hofreiter, M., Spaulding, W. G., Martin, P. S., Stankiewicz, B. A., Bland, H., Evershed, R. P., Possnert, G., and Pääbo, S. 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastenis. Science 281:402406.Google Scholar
Pollard, A. M. 1998. Archaeological reconstruction using stable isotopes. Pp. 285298 in Griffiths, H., ed. Stable isotopes: integration of biological, ecological and geochemical processes. Environmental Plant Biology Series. Bios Scientific, Oxford.Google Scholar
Pollard, A. M., and Heron, C. 1996. Archaeological chemistry. Royal Society of Chemistry, Cambridge, England.Google Scholar
Poole, I., Weyers, J. D. B., Lawson, T., and Raven, J. A. 1996. Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell and Environment 19:705712.Google Scholar
Regert, M., Delacotte, J.-M., Menu, M., Pétrequin, P., and Rolando, C. 1998. Identification of Neolithic hafting adhesives from two lake dwellings at Chalain (Jura, France). Ancient Biomolecules 2:8196.Google Scholar
Riederer, M., Matzke, K., Ziegler, F., and Kögel-Knabner, I. 1993. Occurrence, distribution and fate of lipid plant biopolymers cutin and suberin in temperate forest soils. Organic Geochemistry 20:10631076.Google Scholar
Robinson, N., Evershed, R. P., Higgs, W. H., Jerman, K., and Eglinton, G. 1987. Proof of a pine wood origin for pitch from Tudor (Mary Rose) and Etruscan shipwrecks: application of analytical organic chemistry in archaeology. Analyst 112:637644.Google Scholar
Skorupa, L. A., Salatino, M. L. F., and Salatino, A. 1998. Hydrocarbons of leaf epicuticular waxes of Pilocarpus (Rutaceae): taxonomic meaning. Biochemical Systematics and Ecology 26:655662.Google Scholar
Smiley, C. J., ed. 1985. Late Cenozoic history of the Pacific Northwest. American Association for the Advancement of Science, San Francisco.Google Scholar
Smiley, C. J., and Rember, W. C. 1985a. Physical setting of the Miocene Clarkia fossil beds, northern Idaho. Pp. 1131 in Smiley 1985.Google Scholar
Smiley, C. J., and Rember, W. C. 1985b. Composition of the Miocene Clarkia flora. Pp. 95112 in Smiley 1985.Google Scholar
Spicer, R. A. 1991. Plant taphonomic processes. Pp. 71113 in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing the data locked in the fossil record. Plenum, New York.Google Scholar
Spiker, E. C., and Hatcher, P. G. 1987. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood. Geochimica et Cosmochimica Acta 51:13851391.Google Scholar
Stankiewicz, B. A., and van Bergen, P. F., eds. 1998. Nitrogen-containing molecules in the bio- and geosphere. ACS Symposium Series No. 707. American Chemical Society, Washington, D.C. Google Scholar
Stankiewicz, B. A., van Bergen, P. F., Duncan, I. J., Carter, J. F., Briggs, D. E. G., and Evershed, R. P. 1996. Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis-gas chromatography and pyrolysis-gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 10:17471757.Google Scholar
Stankiewicz, B. A., Mastalerz, M., Kruge, M. A., van Bergen, P. F., and Sadowska, A. 1997a. A comparative study of modern and fossil cone scales and seeds of conifers: a geochemical approach. New Phytologist 135:375393.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., Evershed, R. P., Flannery, M. B., and Wuttke, M. 1997b. Preservation of chitin in 25-million-year-old fossils. Science 276:15411543.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., and Evershed, R. P. 1997c. Chemical composition of Paleozoic and Mesozoic fossil invertebrate cuticles as revealed by pyrolysis-gas chromatography/mass spectrometry. Energy Fuels 11:515521.Google Scholar
Stankiewicz, B. A., Hutchins, J. C., Thomson, R., Briggs, D. E. G., and Evershed, R. P. 1997d. Assessment of bog-body tissue preservation by pyrolysis-gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry 11:18841890.Google Scholar
Stankiewicz, B. A., van Bergen, P. F., Smith, M. B., Carter, J. F., Briggs, D. E. G., and Evershed, R. P. 1998a. Comparison of the analytical performance of filament and Curie-point pyrolysis devices. Journal of Analytical and Applied Pyrolysis 45:133151.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., Evershed, R. P., Miller, R. F., and Bierstedt, A. 1998b. The fate of chitin in Quaternary and Tertiary strata. Pp. 211225 in Stankiewicz and van Bergen 1998.Google Scholar
Stankiewicz, B. A., Poinar, H. N., Briggs, D. E. G., Evershed, R. P., and Poinar, G. O. Jr. 1998c. Chemical preservation of plants and insects in natural resins. Proceedings of the Royal Society of London B 265:641647.Google Scholar
Stankiewicz, B. A., Scott, A. C., Collinson, M. E., Finch, P., Mösle, B., Briggs, D. E. G., and Evershed, R. P. 1998d. The molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America. Journal of the Geological Society, London 155:453462.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., Michels, R., Collinson, M. E., Flannery, M. B., and Evershed, R. P. 2000. Alternative origin of aliphatic polymer in kerogen. Geology 28:559562.Google Scholar
Stone, A. C., and Stoneking, M. 1999. Analysis of ancient DNA from a prehistoric Amerindian cemetery. Philosophical Transactions of the Royal Society of London B 354:153159.Google Scholar
Stott, A. W., and Evershed, R. P. 1996. 13C analysis of cholesterol preserved in archaeological bones and teeth. Analytical Chemistry 24:44024408.Google Scholar
Stott, A. W., Evershed, R. P., Jim, S., Jones, V., Rogers, J. M., Tuross, N., and Ambrose, S. 1999. Cholesterol as a new source of palaeodietary information: experimental approaches and archaeological applications. Journal of Archaeological Science 26:705716.Google Scholar
Switsur, R., and Waterhouse, J. 1998. Stable isotopes and tree ring cellulose. Pp. 303316 in Griffiths, H., ed. Stable isotopes: integration of biological, ecological and geochemical processes. Environmental Plant Biology Series. Bios Scientific, Oxford.Google Scholar
Sykes, B. 1999. The molecular genetics of European ancestry. Philosophical Transactions of the Royal Society of London B 354:131139.Google Scholar
Tegelaar, E. W., de Leeuw, J. W., Derenne, S., and Largeau, C. 1989. A reappraisal of kerogen formation. Geochimica Cosmochimica Acta 53:31033106.Google Scholar
Tegelaar, E. W., Kerp, H., Visscher, H., Schenk, P. A., and de Leeuw, J. W. 1991. Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology 17:133144.Google Scholar
Tegelaar, E. W., Hollman, G. G., van de Vegt, P., de Leeuw, J. W., and Holloway, P. J. 1995. Chemical characterization of the periderm tissue of some angiosperm species: recognition of an insoluble, non-hydrolyzable, aliphatic biomacromolecule (suberan). Organic Geochemistry 23:239250.Google Scholar
Tissot, B., and Weite, D. H., eds. 1984. Petroleum formation and occurrence. Springer, Berlin.Google Scholar
Tuross, N., and Stathoplos, L. 1993. Ancient proteins in fossil bones. Methods in Enzymology 224:121129.Google Scholar
van Bergen, P. F., Collinson, M. E., and de Leeuw, J. W. 1993. Chemical composition and ultrastructure of fossil and extant salvinialean microspore massulae and megaspores. Grana (Suppl.) 1:1830.Google Scholar
van Bergen, P. F., Collinson, M. E., Hatcher, P. G., and de Leeuw, J. W. 1994a. Lithological control on the state of preservation of fossil seed coats of water plants. In Telnaes, N., Graas, B. van, and Oygard, K., eds. Advances in organic geochemistry 1993. Organic Geochemistry 22:683702.Google Scholar
van Bergen, P. F., Collinson, M. E., Sinninghe Damsté, J. S., and de Leeuw, J. W. 1994b. Chemical and microscopical characterization of inner seed coats of fossil water plants. Geochimica Cosmochimica Acta 58:231240.Google Scholar
van Bergen, P. F., Goni, M., Collinson, M. E., Barrie, P. J., Sinninghe Damsté, J. S., and de Leeuw, J. W. 1994c. Chemical and microscopical characterization of outer seed coats of fossil and extant water plants. Geochimica Cosmochimica Acta 58:38233844.Google Scholar
van Bergen, P. F., Scott, A. C., Barrie, P. J., de Leeuw, J. W., and Collinson, M. E. 1994d. The chemical composition of upper Carboniferous pteridosperm cuticles. Organic Geochemistry 21:107112.Google Scholar
van Bergen, P. F., Collinson, M. E., Briggs, D. E. G., de Leeuw, J. W., Scott, A. C., Evershed, R. P., and Finch, P. 1995. Resistant biomacromolecules in the fossil record. Acta Botanica Neerlandica 44:319342.Google Scholar
van Bergen, P. F., Collinson, M. E., and de Leeuw, J. W. 1996. Characterization of the insoluble constituents of propagule walls of fossil and extant water lilies: implications for the fossil record. Ancient Biomolecules 1:5581.Google Scholar
van Bergen, P. F., Bland, H. A., Horton, M. C., and Evershed, R. P. 1997a. Chemical and morphological changes in ancient seeds and fruits during preservation by desiccation. Geochimica Cosmochimica Acta 61:19191930.Google Scholar
van Bergen, P. F., Peakman, T. M., Leigh-Firbank, E. C., and Evershed, R. P. 1997b. Chemical evidence for archaeological frankincense: boswellic acids and their derivatives in solvent soluble and insoluble fractions of resin-like materials. Tetrahedron Letters 38:84098412.Google Scholar
van Bergen, P. F., Collinson, M. E., Scott, A. C., and de Leeuw, J. W. 1997c. Unusual resin chemistry from Upper Carboniferous pteridosperm resin rodlets. In Anderson, K. B. and Crelling, J. C., eds. Amber, resinite and fossil resins. ACS Symposium Series 617:150169. American Chemical Society, Washington, DC.Google Scholar
van Bergen, P. F., Poole, I., Ogilvie, T. M. A., Caple, C., and Evershed, R. P. 2000. Evidence for the demethylation of syringyl moieties in archaeological wood using pyrolysis/gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry (in press).Google Scholar
van der Merwe, N. J., and Vogel, J. C. 1977. 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276:815816.Google Scholar
van de Water, P. K., Leavitt, S. W., and Betancourt, J. L. 1994. Trends in stomatal density and the 13C/12C ratios of Pinus flexilis during last glacial-interglacial cycle. Science 264:239243.Google Scholar
Waring, R. H., and Silvester, W. B. 1994. Variation in foliar δ13C values within the crowns of Pinus radiata trees. Tree Physiology 14:12031213.Google Scholar
Williams, J. L. 1985. Miocene epiphyllous fungi from northern Idaho. Pp. 139142 in Smiley 1985.Google Scholar
Wilson, M. A., and Hatcher, P. G. 1988. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid state 13C nuclear magnetic resonance. Organic Geochemistry 12:539546.Google Scholar