Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T16:05:42.419Z Has data issue: false hasContentIssue false

Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles

Published online by Cambridge University Press:  08 February 2016

Erik W. Tegelaar
Affiliation:
Delft University of Technology, Faculty of Chemical Technology and Materials' Science, Organic Geochemistry Unit, De Vries van Heystplantsoen 2, 2628 RZ Delft, The Netherlands Laboratory of Palaeobotany and Palynology, University of Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
Hans Kerp
Affiliation:
University of Pennsylvania, Department of Geology, 240 South 33rd Street, Philadelphia, Pennsylvania 19104
Henk Visscher
Affiliation:
Laboratory of Palaeobotany and Palynology, University of Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
Pieter A. Schenck
Affiliation:
Delft University of Technology, Faculty of Chemical Technology and Materials' Science, Organic Geochemistry Unit, De Vries van Heystplantsoen 2, 2628 RZ Delft, The Netherlands
Jan W. de Leeuw
Affiliation:
Delft University of Technology, Faculty of Chemical Technology and Materials' Science, Organic Geochemistry Unit, De Vries van Heystplantsoen 2, 2628 RZ Delft, The Netherlands

Abstract

The impact of the variations in the chemical composition of higher vascular plant cuticles on their fossil record is usually not considered in paleobotanical and, more particularly, taphonomic studies. Here we address the subject with reference to the chemical characterization of insoluble cuticular matrices of a large variety of recent and fossil cuticles. The cuticles were analyzed using Curie-point pyrolysis-gas chromatographic techniques. Cuticular matrices of extant higher plants consist either of the biopolyester cutin, the insoluble, non-hydrolyzable polymethylenic biopolymer cutan, or a mixture of both biopolymers. In fossil cuticles an additional cuticular matrix type consisting of cutan and cutin-derived material is recognized. On the basis of the variations in their chemical composition and the different behavior of the cuticular constituents (viz., cutin and cutan) during diagenesis, it is concluded that the paleobotanical record of cuticles will be biased toward taxa originally having a significant amount of cutan in their cuticular matrix.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Clement-Westerhof, J. A. 1984. Aspects of Permian palaeobotany and palynology. IV. The conifer Ortiseia Florin from the Val Gardena Formation of the Dolomites and the Vicentinian Alps (Italy) with special reference to a revised concept of the Walchiaceae (Göppert) Schimper. Review of Palaeobotany and Palynology 41:51166.CrossRefGoogle Scholar
De Vries, H., Bredemeijer, G., and Heinen, W. 1967. The decay of cutin and cuticular components by soil microorganisms in their natural environment. Acta Botanica Neerlandica 16:102110.CrossRefGoogle Scholar
Dilcher, D. L. 1963. Cuticular analysis of Eocene leaves of Ocotea obtusifolia. American Journal of Botany 50:18.CrossRefGoogle Scholar
Dilcher, D. L. 1971. A revision of the Eocene flora of southeastern North America. Palaeobotanist 20:718.Google Scholar
Dilcher, D. L. 1974. Approaches to the identification of angiosperm leaf remains. Botanical Review 40:1157.CrossRefGoogle Scholar
Ferguson, D. K. 1985. The origin of leaf-assemblages—new light on an old problem. Review of Palaeobotany and Palynology 46:117188.CrossRefGoogle Scholar
Ferguson, D. K., Jähnichen, H., and Alvin, K. L. 1978. Amentotaxus Pilger from the European Tertiary. Feddes Repertorium 89:379410.CrossRefGoogle Scholar
Gastaldo, R. A., Bearce, S. C., Degges, C. W., Hunt, R. J., Peebles, M. W., and Violette, D. L. 1989. Biostratinomy of a Holocene oxbow lake: a backswamp to mid-channel transect. Review of Palaeobotany and Palynology 58:4760.CrossRefGoogle Scholar
Goth, K., de Leeuw, J. W., Püttmann, W., and Tegelaar, E. W. 1988. Origin of Messel Oil Shale Kerogen. Nature 336:759761.CrossRefGoogle Scholar
Holloway, P. J. 1982a. Structure and histochemistry of plant cuticular membranes: an overview. Pp. 132. In Cutler, D. F., Alvin, K. L., and Price, C. E. (eds.), The Plant Cuticle. Linnean Society Symposium Series 10. Academic Press; London.Google Scholar
Holloway, P. J. 1982b. The chemical constitution of plant cutins. Pp. 4585. In Cutler, D. F., Alvin, K. L., and Price, C. E. (eds.), The Plant Cuticle. Linnean Society Symposium Series 10. Academic Press; London.Google Scholar
Holloway, P. J. 1984. Cutins and suberins, the polymeric plant lipids. Pp. 321346. In Mangold, H. K. (ed.), CRC Handbook of Chromatography, Lipids, Volume 1. CRC Press Inc.; Boca Raton, Florida.Google Scholar
Hunneman, D. H., and Eglinton, G. 1972. The constituent acids of gymnosperm cutins. Phytochemistry 11:19892001.CrossRefGoogle Scholar
Jones, J. H., and Dilcher, D. L. 1988. A study of the “Dryophyllum” leaf forms from the Paleogene of southeastern North America. Palaeontographica B208:5380.Google Scholar
Kerp, J.H.F. 1988. Aspects of Permian palaeobotany and palynology. X. The West and Central European species of the genus Autunia Krasser emend. Kerp (Peltaspermaceae) and the formgenus Rhachiphyllum Kerp (callipterid foliage). Review of Palaeobotany and Palynology 54:249360.CrossRefGoogle Scholar
Kerp, J.H.F. 1989. Cuticular analysis of gymnosperms—a short introduction. Pp. 3663. In Tiffney, B. H. (ed.), Phytodebris—Notes for a Workshop on the Study of Fragmentary Plant Remains. Paleobotanical Section of the Botanical Society of America, Toronto.Google Scholar
Kilpper, K. 1984. Koniferen aus den Tertiären deckschichten des Niederrheinischen Hauptflözes, 3. Taxodiaceae und Cupressaceae. Palaeontographica B124:102111.Google Scholar
Knappe, H., and Rüffle, L. 1975. Neue Monimiaceen-Blätter im Santon des Subherzyn und ihre phytogeographischen Beziehungen zur Flora des ehemaligen Gondwana-Kontinents. Wissenschaftliche Zeitschrift der Humboldt-Universität Berlin, Mathematische-Naturwissenschaftliche Reihe 24:493499.Google Scholar
Knoll, A. H., and Rothwell, G. W. 1981. Paleobotany: perspective in 1980. Paleobiology 7:735.CrossRefGoogle Scholar
Kolattukudy, P. E. 1980. Biopolyester membranes of plants: cutin and suberin. Science 208:9901000.CrossRefGoogle ScholarPubMed
Nip, M., Tegelaar, E. W., de Leeuw, J. W., Schenck, P. A, and Holloway, P. J. 1986a. A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Evidence from pyrolysis and 13C-NMR analysis of present-day and fossil plants. Naturwissenschaften 73:579585.CrossRefGoogle Scholar
Nip, M., Tegelaar, E. W., Brinkhuis, H., de Leeuw, J. W., Schenck, P. A., and Holloway, P. J. 1986b. Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: recognition of a new highly aliphatic and resistant biopolymer. Organic Geochemistry 10:769778.CrossRefGoogle Scholar
Nip, M., de Leeuw, J. W., Holloway, P. J., Jensen, J.P.T., Sprenkels, J.C.M., de Poorter, M., and Sleeckx, J.J.M. 1987. Comparison of flash pyrolysis, differential scanning calorimetry, 13C NMR and IR spectroscopy in the analysis of a highly aliphatic biopolymer from plant cuticles. Journal of Analytical and Applied Pyrolysis 11:287295.CrossRefGoogle Scholar
Nip, M., de Leeuw, J. W., Schenck, P. A., Windig, W., Meuzelaar, H.L.C., and Crelling, J. C. 1989. A flash pyrolysis and petrographic study of cutinite from the Indiana paper coal. Geochimica et Cosmochimica Acta 53:671683.CrossRefGoogle Scholar
Oldham, T.C.B. 1976. Flora of the Wealden plant debris beds of England. Palaeontology 19:437502.Google Scholar
Rüffle, L., and Jähnichen, H. 1976. Die Myrtaceen im Geiseltal und einigen anderen Fundstellen des Eozän. Abhandlungen Zentrales Geologisches Institut, Paläontologischen Abhandlungen 26:307336.Google Scholar
Scheihing, M. H., and Pfefferkorn, H. W. 1984. The taphonomy of land plants in the Orinoco delta: a model for the incorporation of plant parts in clastic sediments of Upper Carboniferous age in Euramerica. Review Palaeobotany and Palynology 41:205240.CrossRefGoogle Scholar
Schmidt, H. W., and Schönherr, J. 1982. Development of plant cuticles: occurrence and role of non-ester cutin bonds in cutin of Clivia miniata Reg. leaves. Planta 156:380384.CrossRefGoogle ScholarPubMed
Spicer, R. A. 1981. The sorting and deposition of allochthonous plant material in a modern environment at Silwood Lake, Silwood Park, Berkshire, England. U.S. Geological Survey Professional Papers 1143:177.Google Scholar
Spicer, R. A. 1989. The formation and interpretation of plant fossil assemblages. Advances in Botanical Research 16:95191.CrossRefGoogle Scholar
Spicer, R. A., and Wolfe, J. A. 1987. Plant taphonomy of late Holocene deposits in Trinity (Clair Engle) Lake, northern California. Paleobiology 13:227245.CrossRefGoogle Scholar
Tegelaar, E. W., de Leeuw, J. W., Derenne, S., and Largeau, C. 1989a. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta 53:31033106.CrossRefGoogle Scholar
Tegelaar, E. W., de Leeuw, J. W., Largeau, C., Derenne, S., Schulten, H.-R., Müller, R., Boon, J. J., Nip, M., and Sprenkels, J.C.M. 1989b. Scope and limitation of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L. Journal of Analytical and Applied Pyrolysis 15:2954.CrossRefGoogle Scholar
Tegelaar, E. W., de Leeuw, J. W., and Holloway, P. J. 1989c. Some mechanisms of flash pyrolysis of naturally occurring higher plant polyesters. Journal of Analytical and Applied Pyrolysis 15:289295.CrossRefGoogle Scholar
Tegelaar, E. W., Wattendorf, J., and de Leeuw, J. W.In Press. A comparative structural, chemical and histochemical study of extant Symplocos paniculata and Eocene Symplocos hallensis leaf cuticles. New Phytologist.Google Scholar
Thomas, B. A., and Spicer, R. A. 1986. The Evolution and Palaeobiology of Land Plants. Croom Helm; Beckenham, Kent.Google Scholar
Tulloch, A. P. 1976. Chemistry of waxes of higher plants. Pp. 236289. In Kolattukudy, P. E. (ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier; Amsterdam.Google Scholar
Upchurch, G. R. 1989. Dispersed angiosperm cuticles. Pp. 6592. In Tiffney, B. H. (ed.), Phytodebris—Notes for a Workshop on the Study of Fragmentary Plant Remains. Paleobotanical Section of the Botanical Society of America; Toronto.Google Scholar
Venema, A., and Veurink, J. 1985. A method for solvent free application of polymers and inorganic materials to ferromagnetic wires used for pyrolysis-capillary gas chromatography methods. Journal of Analytical and Applied Pyrolysis 7:207213.CrossRefGoogle Scholar
Visscher, H., Kerp, J.H.F., and Clement-Westerhof, J. A. 1986. Aspects of Permian palaeobotany and palynology. VI. Towards a flexible system of naming Palaeozoic conifers. Acta Botanica Neerlandica 35:8799.CrossRefGoogle Scholar