Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:41:52.420Z Has data issue: false hasContentIssue false

Behavioral implications of saber-toothed felid morphology

Published online by Cambridge University Press:  08 April 2016

William J. Gonyea*
Affiliation:
Department of Cell Biology, The University of Texas Health Science Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75235

Abstract

The claw equipped forelimbs have been shown to be an important hunting weapon for modern felids. In light of its functional importance, the claw retractile mechanism for modern felids was compared with that of the saber-toothed felids. In this regard, the functional anatomy of claw retraction for saber-toothed felids was found to be the same as that of modern forms. Body proportions of modern felids were also compared with saber-toothed felids and the relationship of their morphology to habitat structure and habitat utilization were studied. It was found that the relative body proportions for Hoplophoneus and Smilodon were similar to modern forest felids (dwellers of high structured dense forest), while Dinictis and Machairodus could probably compete in more open terrain (open woodland, meadow). It is postulated that saber-toothed felids used their claw equipped forelimbs to grasp and hold their prey as do modern felids. In this fashion, the enlarged upper canines could then be used to kill the victim, and this was probably done by a stab to the nape of the neck. It is also thought that Smilodon, like the modern lion, adapted to open habitats by forming prides.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abel, O. 1944. Studien uber vergrosserte Einzelzahne des Vordergebisses der Wirbeltiere und deren Funktion. Paleobiologica. 8:124146.Google Scholar
Bohlin, B. 1940. Food habit of machaerodonts, with special regard to Smilodon. Bull. Geol. Inst. Upsala. 28:156174.Google Scholar
Bohlin, B. 1947. The sabre-toothed tigers once more. Bull. Geol. Inst. Upsala. 32:1120.Google Scholar
Brandes, G. 1900. Über eine Ursache des Aussterbens Diluvialer Saügthiere. Deutsch Ges. Anthrop. 31:103107.Google Scholar
Brunet, M. 1967. Contribution à la connaissance des genres Dinictis et Hoplophoneus (Carnivora—Felidae). Travaux de Institut de Géolgie et d'Anthropologie Prehistorique. 53:137.Google Scholar
Burt, W. H. and Grossenheider, R. P. 1952. A Field Guide to the Mammals. 346 pp. Houghton Mifflin; Boston, Massachusetts.Google Scholar
Cabrera, A. and Yepes, J. 1960. Maníferos Súd Americanos. 2nd ed. 2 Vols. 289 pp. Ediar; Buenos Aires.Google Scholar
Davis, D. D. 1962. Allometric relationships in lions vs. domestic cats. Evolution. 16:505514.CrossRefGoogle Scholar
Davis, D. D. 1964. The giant panda. Fieldiana, Zool. Mem. 3:1339.Google Scholar
Dorst, J. and Dandelot, P. 1970. A Field Guide to the Larger Mammals of Africa. 439 pp. Houghton Mifflin; Boston, Massachusetts.Google Scholar
Eaton, R. 1970. Hunting behavior of the cheetah. J. Wildl. Manage. 34:5667.Google Scholar
Eloff, F. C. 1973. Ecology and behavior of the Kalahari lion, Panthera leo vernayi (Roberts, 1929). In: Eaton, R., ed. Proc. 1st Int. Conf. Ecol., Behav. and Conserv. of the World's Cats. viii + 349 pp. World Wildl. Safari; Winston, Oregon.Google Scholar
Estes, R. D. 1967. Predators and scavengers. Nat. Hist. N. Y. 76(2 & 3):2029, 38–47.Google Scholar
Ewer, R. F. 1973. The Carnivores. 405 pp. Cornell Univ. Press; New York.Google Scholar
Geist, V. 1966. The evolutionary significance of mountain sheep horns. Evolution. 20:558566.CrossRefGoogle ScholarPubMed
Ginsburg, L. 1961. Plantigradie et digitigrade chez les carnivores fissipedes. Mammalia. 25:121.Google Scholar
Goldman, E. A. 1920. Mammals of Panama. Smithson. Misc. Coll. 69:1309.Google Scholar
Gonyea, W. J. 1973. Some Functional Aspects of the Postcranial Anatomy of the Felidae (Carnivora). Thesis; Univ. of Chicago. Illinois.Google Scholar
Gonyea, W. J. 1976. Adaptive differences in the body proportions of large felids. Acta Anat. 96:8196.Google Scholar
Gonyea, W. and Ashworth, R. 1975. The form and function of retractile claws in the Felidae and other representative carnivorans. J. Morphol. 145:229238.Google Scholar
Goodwin, G. G. 1969. Mammals from the State of Oaxaca, Mexico in the American Museum of Natural History. Bull. Am. Mus. Nat. Hist. 141:1269.Google Scholar
Hall, E. R. and Kelson, K. R. 1959. The Mammals of North America. Vol. 1 & 2. xxx + 1083 pp. Ronald Press; New York.Google Scholar
Hildebrand, M. 1952. An analysis of body proportions in the Canidae. Am. J. Anat. 90:217256.CrossRefGoogle ScholarPubMed
Hornocker, M. G. 1969. Winter territoriality in mountain lions. J. Wildl. Manage. 33:457464.Google Scholar
Howell, A. B. 1944. Speed in Animals. xii + 270 pp. Hafner; New York.Google Scholar
Kleiman, D. G. and Eisenberg, J. F. 1973. Comparisons of canid and felid social systems from an evolutionary perspective. Anim. Behav. 21:637659.Google Scholar
Krott, P. 1958. Tupo-Tupo-Tupo. 232 pp. Hutchinson & Co. Ltd.; London.Google Scholar
Krott, P. 1959. The Demon of the North. 259 pp. Alfred A. Knopf; New York.Google Scholar
Kruuk, H. and Turner, M. 1967. Comparative notes on predation by lion, leopard, cheetah, and wild dog in the Serengeti area, East Africa. Mammalia. 31:127.Google Scholar
Kurtén, B. 1952. The Chinese Hipparion fauna. Commentationes Biologicae Societas Scientarum Fennica. 13:182.Google Scholar
Lawrence, M. J. and Brown, R. 1967. British Mammals, Their Tracks, Trails, and Signs. 359 pp. Blandford; London.Google Scholar
Leyhausen, P. 1965. Über die Funktion der relativen Stimmungshierarchie (Dargestellt am Beispiel der phylogenetischen und ontogenetischen Entwicklung des Beutefangs von Raubtieren). Z. Tierpsychol. 22:412494.Google Scholar
Marinelli, W. 1938. Der Schädel von Smilodon, nach der Funktion das Kieferapparates analysiert. Paleobiologica. 6:246272.Google Scholar
Matthew, W. D. 1901. Fossil mammals of the Tertiary of northwestern Colorado. Am. Mus. Nat. Hist. Mem. 1:353447.Google Scholar
Matthew, W. D. 1910. The phylogeny of the Felidae. Bull. Am. Mus. Nat. Hist. 28:289316.Google Scholar
Medway, L. 1969. The Wild Mammals of Malaya. 304 pp. Oxford Univ. Press; Oxford, England.Google Scholar
Merriam, J. C. and Stock, C. 1932. The Felidae of Rancho La Brea. Carnegie Inst. Wash. Publ. 442:1231.Google Scholar
Miller, G. J. 1968. On the age distribution of Smilodon californicus Bovard from Rancho La Brea. Los Angeles County Mus. Contrib. in Sci. 131:117.Google Scholar
Miller, G. J. 1969. A new hypothesis to explain the method of food ingestion used by Smilodon californicus Bovard. TEBIWA. 12:919. [Published by Idaho State University Museum].Google Scholar
Moeller, H. 1968. Zur Frage der Parallelerscheinungen bei Metatheria und Eutheria. Z. für Wiss. Zool. 177:283392.Google Scholar
Ognev, S. 1962. Mammals of the U.S.S.R. and Adjacent Countries. Vol. II & III: Carnivora. 816 pp. Israel Program for Sci. Transl.; Jerusalem.Google Scholar
Radinsky, L. B. 1969. Outlines of canid and felid brain evolution. Ann. of the N. Y. Acad. Sci. 167:277288.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology. 468 pp. Univ. of Chicago Press; Chicago, Illinois.Google Scholar
Schaller, G. 1967. The Deer and the Tiger. 370 pp. Univ. of Chicago Press; Chicago, Illinois.Google Scholar
Schaller, G. 1972. The Serengeti Lion. 480 pp. Univ. of Chicago Press; Chicago, Illinois.Google Scholar
Schultz, C. B., Schultz, M. R., and Martin, L. D. 1970. A new tribe of saber-toothed cats (Barbourofelini) from the Pliocene of North America. Univ. Nebraska State Mus. Bull. 9:131.Google Scholar
Simpson, G. G. 1941. The function of saber-like canines in carnivorous mammals. Am. Mus. Novit. 1130:112.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.Google Scholar
Spinage, C. A. 1968. Horns and other bony structures of the skull of the giraffe and their functional significance. East African Wildl. J. 6:5361.Google Scholar
Stock, C. 1968. Rancho La Brea, A record of Pleistocene life in California. Los Angeles County Mus. Nat. Hist. Sci. Ser. No. 20. Paleontology. 11:181.Google Scholar
Stonehouse, B. 1968. Thermoregulatory function of growing antlers. Nature. 218:870872.Google Scholar
Stroganov, S. U. 1969. Carnivorous Mammals of Siberia. 820 pp. Israel Program for Sci. Transl.; Jerusalem.Google Scholar
Taylor, C. R. 1966. The vascularity and possible thermoregulatory function of horns in goats. Physiol. Zool. 39:127139.CrossRefGoogle Scholar
Taylor, M. E. 1974. The functional anatomy of the forelimb of some African Viverridae (Carnivora). J. Morph. 143:307335.Google Scholar
Turnbull, W. D. 1970. Mammalian masticatory apparatus. Fieldiana: Geol. 18:149356.Google Scholar
Walker, W. 1964. Mammals of the World. 3 Vols. 1284 pp. Johns Hopkins Press; Baltimore, Maryland.Google Scholar
Warren, J. C. 1853. Remarks on Felis smylodon. Proc. Boston Soc. Nat. Hist. 4:256258.Google Scholar
Weber, M. 1904. Die Saügetiere. Einfuhrung in die Anatomie und Systematik der Recenten und Fossilen Mammalia. 866 pp. G. Fischer; Jena.Google Scholar
Yalden, D. W. 1970. The functional morphology of the carpal bones in carnivores. Acta Anat. 77:481500.Google Scholar
Young, S. P. and Goldman, E. A. 1946. The Puma, Mysterious American Cat. 358 pp. Dover Publishing Co.; New York.Google Scholar