Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:40:30.010Z Has data issue: false hasContentIssue false

Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates

Published online by Cambridge University Press:  08 April 2016

Charles W. Thayer*
Affiliation:
Department of Geology, University of Pennsylvania, Philadelphia 19104; and Department of Malacology, Academy of Natural Sciences of Philadelphia

Abstract

The dominance of Paleozoic articulate brachiopods in once-muddy environments may be explained by an array of mechanisms and structures that reject nonfood particles, in some cases without interruption of feeding: (1) behavioral flexibility of the lophophore and its individual filaments; (2) persistent, variable-speed rejection currents on the mantle, which sometimes concentrate pseudofeces in topographically controlled vortices; (3) costae and alae (which have many other probable functions); (4) inhalant currents elevated above substrate; (5) marginal setae.

Some mantle currents parallel (and presumably augment) lophophore feeding currents; others diverge up to 90° to provide rejection while feeding continues. Contrary to previous reports, the lateral cilia seem to be involved in rejection and may reverse.

Repeated claims for the superiority of the gill of suspension-feeding bivalves over the “weak” individual filaments of the lophophore are probably false. In suspension-feeding bivalves, simultaneous feeding and rejection are likely to be hindered by fused gill elements and mucus-trapping of food. The energetically efficient articulates are predicted to have a competitive advantage over suspension-feeding bivalves when oxygen or food is limiting, as, for example, after a bolide impact.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ager, D. V. 1967. Brachiopod paleoecology. Earth-Sci. Rev. 3:157179.Google Scholar
Antia, D. D. J. 1980. Shell laminae and shell orientation in the Upper Silurian, Overton Formation, U.K. Palaeogeogr. Palaeoclimatol. Palaeoecol. 32:119133.Google Scholar
Atkins, D. 1958. A new species and genus of Kraussinidae (Brachiopoda) with a note on feeding. Proc. Zool. Soc. Lond. 131:559581.Google Scholar
Atkins, D. 1959a. The growth stages of the lophophore and loop of the brachiopod Terebratalia transversa (Sowerby). J. Morphol. 105:401426.CrossRefGoogle ScholarPubMed
Atkins, D. 1959b. The growth stages of the lophophore of the brachiopods Platidia davidsoni (Eudes Deslongchamps) and Panomioides (Philippi), with notes on the feeding mechanism. J. Mar. Biol. Ass. U.K. 38:103132.Google Scholar
Atkins, D. 1960. The ciliary feeding mechanism of the Megathyridae (Brachiopoda), and the growth stages of the lophophore. J. Mar. Biol. Ass. U.K. 39:459479.Google Scholar
Ausich, W. I. and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science. 216:173174.CrossRefGoogle ScholarPubMed
Banta, W. C., McKinney, F. K., and Zimmer, R. L. 1974. Bryozoan monticules: excurrent water outlets? Science. 185:783784.Google Scholar
Bayne, B. L. and Newell, R. C. 1983. Physiological energetics of marine mollusca. Pp. 407523. In: Saleuddin, A. S. M. and Wilbur, K. M., eds. The Mollusca, vol. 4, Physiology, part 1. Academic Press; New York.Google Scholar
Boucot, A. J. 1981. Biogeography and community analysis. Pp. 141153. In: Broadhead, T. W., ed. Lophophorates, Notes for a Short Course. Univ. Tenn. Dept. Geol. Sci. Stud. Geol. 5.Google Scholar
Buss, L. W. and Jackson, J. B. C. 1981. Planktonic food availability and suspension-feeder abundance: evidence of in situ depletion. J. Exp. Mar. Biol. Ecol. 49:151161.Google Scholar
Chuang, S. H. 1956. The ciliary feeding mechanisms of Lingula unguis (L.) (Brachiopoda). Proc. Zool. Soc. Lond. 127:167189.Google Scholar
Cook, P. L. and Chimonides, P. J. 1980. Further observations on water current patterns in living Bryozoa. Cahiers de Biol. Mar. 21:393402.Google Scholar
Denny, M. 1980. Locomotion: the cost of gastropod crawling. Science. 208:12881290.CrossRefGoogle ScholarPubMed
Dodd, J. R., and Stanton, R. J. Jr. 1981. Paleoecology, Concepts and Applications. 559 pp. Wiley; New York.Google Scholar
Doherty, P. J. 1976. Aspects of the feeding ecology of the sub-tidal brachiopod Terebratella inconspicua (Sowerby, 1846). 183 pp. M. Sc. thesis, Zoology, Univ. Auckland.Google Scholar
Dral, A. D. G. 1967. The movement of the latero-frontal cilia and the mechanism of particle retention in the mussel (Mytilus edulis L.). Neth. J. Sea Res. 3:391422.Google Scholar
Dubois, H. M. 1916. Variation induced in brachiopods by environmental conditions. Publ. Puget Sound Mar. Biol. Stn. 1:177183.Google Scholar
Fürsich, F. T. and Hurst, J. M. 1974. Environmental factors determining the distribution of brachiopods. Palaeontol. 17:879900.Google Scholar
Gilmour, T. H. J. 1978. Ciliation and function of the food-collecting and waste-rejecting organs of lophophorates. Can. J. Zool. 56:21422155.Google Scholar
Gilmour, T. H. J. 1981. Food-collecting and waste-rejecting mechanisms in Glottidia pyramidata and the persistence of lingulacean inarticulate brachiopods in the fossil record. Can. J. Zool. 59:15391547.Google Scholar
Gould, S. J. and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology. 6:383396.Google Scholar
Gould, S. J. and Lewontin, R. K. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. 205B:581598.Google Scholar
Grant, R. 1981. Living habits of ancient articulate brachiopods. Pp. 127140. In: Broadhead, T. W., ed. Lophophorates, Notes for a Short Course. Univ. Tenn. Dept. Geol. Sci. Stud. Geol. 5.Google Scholar
Hartman, W. D. and Goreau, T. F. 1970. Jamaican coralline sponges: their morphology, ecology and fossil relatives. Symp Zool. Soc. Lond. 25:205243.Google Scholar
Hartman, W. D. and Goreau, T. F. 1975. A Pacific tabulate sponge, living representative of a new order of sclerosponges. 14 pp. Postilla no. 167.Google Scholar
Jackson, J. B. C. 1983. Biological determinants of present and past sessile animal distributions. Pp. 39120. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Jackson, J. B. C., Goreau, T. F., and Hartman, W. D. 1971. Recent brachiopod coralline sponge communities and their paleoecological significance. Science. 173:623625.Google Scholar
J⊘rgensen, C. B. 1975. Comparative physiology of suspension feeding. Ann. Rev. Physiol. 37:5759.Google Scholar
J⊘rgensen, C. B. 1981. Feeding and cleaning mechanisms in the suspension feeding bivalve Mytilus edulis. Mar. Biol. 65:159163.Google Scholar
J⊘rgensen, C. B., Ki⊘robe, T., M⊘hlenberg, F., and Riisgård, H. U. 1984. Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Mar. Ecol. Prog. Ser. 15:283292.Google Scholar
LaBarbera, M. 1977. Brachiopod orientation to water movement. 1. Theory, laboratory behavior, and field orientations. Paleobiology. 3:270287.Google Scholar
LaBarbera, M. 1981. Water flow in and around three species of articulate brachiopods. J. Exp. Mar. Biol. Ecol. 55:185206.Google Scholar
Morton, B. 1983. Feeding and digestion in Bivalvia. Pp. 65147. In: Saleuddin, A. S. M. and Wilbur, K. M., eds. The Mollusca. Vol. 5, pt. 2.Google Scholar
Orton, J. H. 1914. On ciliary mechanisms in brachiopods and some polychaetes, with comparison of the ciliary mechanisms on the gills of molluscs, Protochordata, brachiopods, and cryptocephalous polychaetes, and an account of the endostyle of Crepidula and its allies. J. Mar. Biol. Ass. U.K. 10:283311.CrossRefGoogle Scholar
Paine, R. T. 1971. Energy flow in natural populations of the herbivorous gastropod Tegula funebralis. Limnol. Oceanogr. 16:8698.Google Scholar
Rassoulzadegan, F., Fenaux, L., and Strathmann, R. R. 1984. Effect of flavor and size on selection of food by suspension-feeding plutei. Limnol. Oceanogr. 29:357361.Google Scholar
Richards, J. R. 1952. The ciliary feeding mechanism of Neothyris lenticlaris (Deshayes). J. Morphol. 90:6591.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology. 468 pp. Univ. Chicago Press; Chicago.Google Scholar
Rudwick, M. J. S. 1962a. Notes on the ecology of brachiopods in New Zealand. Trans. R. Soc. N.Z. Zool. 1:327335.Google Scholar
Rudwick, M. J. S. 1962b. Filter-feeding mechanisms in some brachiopods from New Zealand. J. Linn Soc. (Zool.). 44:592615.Google Scholar
Rudwick, M. J. S. 1964. The function of zigzag deflexions in the commissures of fossil brachiopods. Paleontology. 7:135171.Google Scholar
Rudwick, M. J. S. 1965. Ecology and paleoecology. Pp. 199214. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Pt. H. Brachiopoda. Geol. Soc. Am. Univ. Kansas Press.Google Scholar
Rudwick, M. J. S. 1970. Living and Fossil Brachiopods. 199 pp. Hutchinson; London.Google Scholar
Schumann, D. 1969. “Byssuss”-artige Stielmuskel-Konvergenzen bei artikulaten Brachiopoden. N. Jb. Geol. Paläont. Abh. 133:199210.Google Scholar
Sepkoski, J. J. Jr. 1980. The marine fossil record. 1 page chart.Google Scholar
Shumway, S. E., Cucci, T. L., Newell, R. C., and Yentsch, C. M. 1985. Particle selection, ingestion, and absorption in filter-feeding bivalves. J. Exp. Mar. Biol. Ecol. 91:7792.Google Scholar
Silvester, N. R. and Sleigh, M. A. 1984. Hydrodynamic aspects of particle capture by Mytilus. J. Mar. Biol. Assn. U.K. 64:859879.Google Scholar
Steele-Petrovic, H. M. 1975. An explanation for the tolerance of brachiopods and relative intolerance of filter-feeding bivalves for soft muddy bottoms. J. Paleontol. 49:552556.Google Scholar
Steele-Petrovic, H. M. 1979. The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities. Paleontology. 22:101134.Google Scholar
Strathmann, R. 1973. Function of lateral cilia in suspension feeding of lophophorates (Brachiopoda, Phoronida, Ectoprocta). Mar. Biol. 23:129136.CrossRefGoogle Scholar
Strathmann, R. 1982. Comment on Dr. Gilmour's views on feeding by hemichordates and lophophorates. Can. J. Zool. 60:34663468.Google Scholar
Thayer, C. W. 1975. Morphologic adaptations of benthic invertebrates to soft substrata. J. Mar. Res. 33:177189.Google Scholar
Thayer, C. W. 1977. Recruitment, growth, and mortality of a living articulate brachiopod, with implications for the interpretation of survivorship curves. Paleobiology. 3:98109.Google Scholar
Thayer, C. W. 1979. Biological bulldozers and the evolution of marine benthic communities. Science. 203:458461.Google Scholar
Thayer, C. W. 1981. Ecology of living brachiopods. Pp. 110126. In: Broadhead, T. W., ed. Lophophorates, Notes for a Short Course. Univ. Tenn. Dept. Geol. Sci. Stud. Geol. 5.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of the marine benthos. Pp. 479625. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Thayer, C. W. 1985. Brachiopods vs. bivalves: competition, predation, and palatability. Science 228:15271528.Google Scholar
Thayer, C. W. 1986. The respiratory role of brachiopod puncta. Lethaia 19:2331.Google Scholar
Valentine, J. W. 1983. Seasonality: effects in marine benthic communities. Pp. 121156. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Valentine, J. W. and Jablonski, D. 1983. Larval adaptations and patterns of brachiopod diversity in space and time. Evolution. 37:10521064.Google Scholar
Vermeij, G. J. 1982. Unsuccessful predation and evolution. Am. Nat. 120:701720.Google Scholar
Vogel, S. 1981. Life in Moving Fluids. 352 pp. Willard Grant Press; Boston.Google Scholar
Westbroek, P., Yanagida, J., and Isa, Y. 1980. Functional morphology of brachiopod and coral skeletal structures supporting ciliated epithelia. Paleobiology. 6:313330.Google Scholar
Wildish, D. J. and Kristmanson, D. D. 1984. Importance of mussels of the benthic boundary layer. Can. J. Fish. Aquat. Sci. 41:16181625.Google Scholar
Williams, A. 1965. Stratigraphic distribution. Pp.H237H250. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part H. Brachiopoda. Geol. Soc. Am. Univ. Kans. Press.Google Scholar
Winston, J. E. 1978. Polypide morphology and feeding behavior in marine ectoprocts. Bull. Mar. Sci. 28:131.Google Scholar
Winston, J. E. 1981. Feeding behavior of modern bryozoans. Pp. 121. In: Broadhead, T. W., ed. Lophophorates, Notes for a Short Course. Univ. Tenn. Dept. Geol. Sci. Stud. Geol. 5.Google Scholar
Wolbach, W. S., Lewis, R. S., and Anders, E. 1985. Cretaceous extinctions: evidence for wildfires and search for metoritic material. Science. 230:167230.Google Scholar