Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T22:02:26.177Z Has data issue: false hasContentIssue false

Analysis of periodicity of extinction using the 2012 geological timescale

Published online by Cambridge University Press:  08 April 2016

Adrian L. Melott
Affiliation:
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, U.S.A. E-mail: [email protected]
Richard K. Bambach
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, D.C. 20013-7012, U.S.A. E-mail: [email protected]

Abstract

Analysis of two independent data sets with increased taxonomic resolution (genera rather than families) using the revised 2012 timescale reveals that an extinction periodicity first detected by Raup and Sepkoski (1984) for only the post-Paleozoic actually runs through the entire Phanerozoic. Although there is not a local peak of extinction every 27 Myr, an excess of the fraction of genus extinction by interval follows a 27-Myr timing interval and differs from a random distribution at the p ∼ 0.02 level. A 27-Myr periodicity in the spectrum of interval lengths no longer appears, removing the question of a possible artifact arising from it. Using a method originally developed in Bambach (2006) we identify 19 intervals of marked extinction intensity, including mass extinctions, spanning the last 470 Myr (and with another six present in the Cambrian) and find that ten of the 19 lie within ±3 Myr of the maxima in the spacing of the 27-Myr periodicity, which differs from a random distribution at the p = 0.004 level. These 19 intervals of marked extinction intensity also preferentially occur during decreasing diversity phases of a well-known 62-Myr periodicity in diversity (16 of 19, p = 0.002). Both periodicities appear to enhance the likelihood of increased severity of extinction, but the cause of neither periodicity is known. Variation in the strength of the many suggested causes of extinction coupled to the variation in combined effect of the two different periodicities as they shift in and out of phase is surely one of the reasons that definitive comparative study of the causes of major extinction events is so elusive.

Type
Featured Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ainsaar, L., Meidla, T., and Martma, T. 2004. The Middle Caradoc facies and faunal turnover in the Late Ordovician Baltoscandian paleobasin. Palaeogeography, Palaeoclimatology, Palaeoecology 210:119133.Google Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105 (Suppl. 1):1153611542, and supporting information atwww.pnas.org/cgi/content/short/0802597105.Google Scholar
Alroy, J. 2010. The shifting balance of diversity among major marine animal groups. Science 329:11911194.Google Scholar
Arens, N. A., and West, I. D. 2008. Press-pulse: a general theory of mass extinction? Paleobiology 34:456471.Google Scholar
Atri, D., and Melott, A. L. 2011. Biological implications of high-energy cosmic ray induced muon flux in the extragalactic shock model. Geophysical Research Letters 38:L19203. doi: 10.1029/2011GL049027.CrossRefGoogle Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.CrossRefGoogle Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.CrossRefGoogle Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.Google Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:122.CrossRefGoogle Scholar
Barnes, C., Hallam, A., Kaljo, D., Kauffman, E. G., and Walliser, O. H. 1996. Global event stratigraphy. Pp. 319333inWalliser, O. H., ed. Global events and event stratigraphy in the Phanerozoic. Springer, Berlin.Google Scholar
Böhme, M. 2003. The Miocene climatic optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195:389401.CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K. 2011. Paleoecologic megatrends in marine metazoa. Annual Review of Earth and Planetary Sciences 39:241269.Google Scholar
Davis, M., Hut, P., and Muller, R. A. 1984. Extinction of species by periodic comet showers. Nature 308:715717.Google Scholar
Feng, C., and Bailer-Jones, C. A. L. 2013. Assessing the influence of the solar orbit on terrestrial biodiversity. Astrophysical Journal 768:152172. doi:10.1088/0004-637X/768/2/152.CrossRefGoogle Scholar
Feulner, G. 2011. Limits to biodiversity cycles from a unified model of mass-extinction events. International Journal of Astrobiology 10:123129.CrossRefGoogle Scholar
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.Google Scholar
Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H., and Vigran, J. O. 2007. Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291294.Google Scholar
Gilinsky, N. L. 1986. Comment on “Was there 26 Myr periodicity of extinctions?” Nature 321:533534.CrossRefGoogle Scholar
Glikson, A. 2005. Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth and Planetary Science Letters 236:933937.Google Scholar
Gradstein, F. M., Ogg, G., and Smith, A. G. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G. 2012. The geologic time scale 2012. Elsevier, Amsterdam.Google Scholar
Hallam, A., and Wignall, P. B. 1999. Mass extinctions and sea-level change. Earth-Science Reviews 48:217250.Google Scholar
Hoffman, A. 1985. Patterns of family extinction depend on definition and geological timescale. Nature 315:659662.Google Scholar
Hoffman, A., and Ghiold, J. 1985. Randomness in the pattern of “mass extinctions” and “waves of origination.” Geological Magazine 122:14.Google Scholar
Hönisch, B., Ridgwell, A., and 19 others. 2012. The geological record of ocean acidification. Science 335:10581063.Google Scholar
Houben, A. J. P., van Mourik, C. A., Montanari, A., Coccioni, R., and Brinkhuis, H. 2012. The Eocene-Oligocene transition: changes in sea level, temperature, or both? Palaeogeography, Palaeoclimatology, Palaeoecology 335–336:7583.Google Scholar
Huber, B. T., Norris, R. D., and MacLeod, K. G. 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123126.Google Scholar
Kiessling, W., and Simpson, C. 2010. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17:5667.Google Scholar
Lieberman, B. S., and Melott, A. L. 2007. Considering the case for biodiversity cycles: reexamining the evidence for periodicity in the fossil record. PLoS ONE 2:e759. doi:10.1371/journal.pone.0000759.Google Scholar
Lieberman, B. S., and Melott, A. L. 2013. Declining volatility, a general property of disparate systems: from fossils, to stocks, to the stars. Palaeontology 56:12971304. doi: 10.1111/pala.12017.Google Scholar
Mayhew, P. J., Jenkins, G. B., and Benton, T. G. 2008. A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proceedings of the Royal Society of London B 275:4753.Google ScholarPubMed
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2012. Ecological ranking of Phanerozoic biodiversity crises: the Serpukhovian (Early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology 40:147150.Google Scholar
McInerney, F. A., and Wing, S. L. 2011. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences 39:489516.Google Scholar
Medvedev, M. V., and Melott, A. L. 2007. Do extragalactic cosmic rays induce cycles in fossil diversity? Astrophysical Journal 664:879889.Google Scholar
Melott, A. L., and Bambach, R. K. 2010. Nemesis reconsidered. Monthly Notices of the Royal Astronomical Society Letters 407:L99L102.CrossRefGoogle Scholar
Melott, A. L., and Bambach, R. K. 2011a. A ubiquitous ∼62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiology 37:92112.Google Scholar
Melott, A. L., and Bambach, R. K. 2011b. A ubiquitous ∼62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37:383408.Google Scholar
Melott, A. L., and Bambach, R. K. 2013. Do periodicities in extinction—with possible astronomical connections—survive a revision of the geological timescale? Astrophysical Journal 773:610.CrossRefGoogle Scholar
Melott, A. L., and Thomas, B. C. 2011. Astrophysical ionizing radiation and the earth: a brief review and census of intermittent intense sources. Astrobiology 11:343361. doi:10.1089/ast.2010.0603.Google Scholar
Melott, A. L., Atri, D., Thomas, B. C., Medvedev, M. K., Wilson, G. W., and Murray, M. J. 2010. Atmospheric consequences of cosmic ray variability in the extragalactic shock model. II. Revised ionization levels and their consequences. Journal of Geophysical Research (Planets) 115:E08002. doi:10.1029/2010JE003591.Google Scholar
Melott, A. L., Bambach, R. K., Petersen, K. D., and McArthur, J. M. 2012. A ∼60 Myr periodicity is common to marine-87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect? Journal of Geology 120:217226.Google Scholar
Meyer, K. M., and Kump, L. R. 2008. Oceanic euxinia in earth history: causes and consequences. Annual Review of Earth and Planetary Sciences 36:251288.Google Scholar
Meyers, S. R., and Peters, S. E. 2011. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth and Planetary Science Letters 303:174180.CrossRefGoogle Scholar
Morris, P. J., Ivany, L. C., Schopf, K. M., and Brett, C. E. 1995. The challenge of paleoecological stasis: reassessing sources of evolutionary stability. Proceedings of the National Academy of Sciences USA 92:1126911273.Google Scholar
Patzkowsky, M. E., Slupik, L. M., Arthur, M. A., Pancost, R. D., and Freeman, K. H. 1997. Late Middle Ordovician environmental change and extinction: harbinger of Late Ordovician or continuation of Cambrian patterns? Geology 25:911914.Google Scholar
Pelejero, C., Calvo, E., and Hoegh-Guldberg, O. 2010. Paleo-perspectives on ocean acidification. Trends in Ecology and Evolution 25:332344.Google Scholar
Pörtner, H.-O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Marine Ecology Progress Series 373:203217.Google Scholar
Prokoph, A., Bilal, H. E., and Ernst, R. 2013. Periodicities in the emplacement of large igneous provinces through the Phanerozoic: relations to ocean chemistry and marine biodiversity evolution. Geoscience Frontiers 4:263276. http://dx.doi.org/10.1016/j.gsf.2012.08.001.Google Scholar
Rampino, M. R., and Prokoph, A. 2013. Are mantle plumes periodic? Eos 94:113115.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences USA 81:801805.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1986a. Periodic extinction of families and genera. Science 231:833836.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1986b. Comment on “Was there a 26 Myr periodicity of extinctions?” Nature 321:533.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1988. Testing for periodicity of extinction. Science 241:9496.Google Scholar
Rode, A., and Lieberman, B. S. 2004. Using GIS to study the biogeography of the Late Devonian biodiversity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.CrossRefGoogle Scholar
Rohde, R. A., and Muller, R. A. 2005. Cycles in fossil diversity. Nature 434:208210.Google Scholar
Rodriguez, L., Cardenas, R., and Rodrigues, O. 2013. Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model. International Journal of Astrobiology 12:326330. doi: 10.1017/S1473550413000219.Google Scholar
Sahney, S., Benton, M. J., and Falcon-Lang, H. J. 2010. Rainforest collapse triggered Carboniferous tetrapod diversification. Geology 38:10791082.Google Scholar
Scargle, J. D. 1982. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal 263:835853.Google Scholar
Scargle, J. D. 1989. Studies in astronomical time series analysis. III. Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophysical Journal 343:874887.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363.Google Scholar
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, V. A., and Vasiliev, Y. R. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477:312316.Google Scholar
Stanley, S. M., and Powell, M. G. 2003. Depressed rates of origination and extinction during the Late Paleozoic ice age: a new state for the global marine ecosystem. Geology 31:877880.Google Scholar
Stigall, A. L. 2012. Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction.” GSA Today 22 (1):49.Google Scholar
Stigler, S. M., and Wagner, M. J. 1987. A substantial bias in nonparametric tests for periodicity in geophysical data. Science 238:940945.Google Scholar
Stigler, S. M., and Wagner, M. J. 1988. Testing for periodicity of extinction: response. Science 241:9699.Google Scholar
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366370.Google Scholar
Twitchett, R. J. 2006. The palaeoclimatology, palaeoecology, and palaeoenvironmental analysis of mass extinction events. Palaeogeography, Palaeoclimatology, Palaeoecology 232:190:213.Google Scholar
Ujié, H. 1984. A Middle Miocene hiatus in the Pacific region: Its stratigraphic and paleoceanographic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 46:143164.Google Scholar
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.Google Scholar
Vrba, E. S. 1993. Turnover-pulses, the Red Queen, and related topics. American Journal of Science 293-A:418452.Google Scholar
Wang, S. C., and Bush, A. M. 2008. Adjusting global extinction rates to account for taxonomic susceptibility. Paleobiology 34:434455.Google Scholar
White, R. V., and Saunders, A. D. 2005. Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos 79:299316.Google Scholar
Whitmire, D. P., and Jackson, A. A. IV. 1984. Are periodic mass extinctions driven by a distant solar companion? Nature 308:713715.Google Scholar