Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T18:50:45.332Z Has data issue: false hasContentIssue false

An alternative method for predicting body mass: the case of the Pleistocene marsupial lion

Published online by Cambridge University Press:  08 April 2016

Stephen Wroe
Affiliation:
School of Biological Sciences AO8, University of Sydney, New South Wales, Sydney 2006, Australia. E-mail: [email protected]
Troy Myers
Affiliation:
Marine Fossil Museum, Richmond, Queensland 4822, Australia
Frank Seebacher
Affiliation:
School of Biological Sciences AO8, University of Sydney, New South Wales, Sydney 2006, Australia. E-mail: [email protected]
Ben Kear
Affiliation:
South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
Anna Gillespie
Affiliation:
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
Mathew Crowther
Affiliation:
School of Biological Sciences AO8, University of Sydney, New South Wales, Sydney 2006, Australia. E-mail: [email protected]
Steve Salisbury
Affiliation:
Palaeontology Section, Queensland Museum, Brisbane 4101, Queensland, Australia

Abstract

Accurate estimates of body mass in fossil taxa are fundamental to paleobiological reconstruction. Predictive equations derived from correlation with craniodental and body mass data in extant taxa are the most commonly used, but they can be unreliable for species whose morphology departs widely from that of living relatives. Estimates based on proximal limb-bone circumference data are more accurate but are inapplicable where postcranial remains are unknown. In this study we assess the efficacy of predicting body mass in Australian fossil marsupials by using an alternative correlate, endocranial volume. Body mass estimates for a species with highly unusual craniodental anatomy, the Pleistocene marsupial lion (Thylacoleo carnifex), fall within the range determined on the basis of proximal limb-bone circumference data, whereas estimates based on dental data are highly dubious. For all marsupial taxa considered, allometric relationships have small confidence intervals, and percent prediction errors are comparable to those of the best predictors using craniodental data. Although application is limited in some respects, this method may provide a useful means of estimating body mass for species with atypical craniodental or postcranial morphologies and taxa unrepresented by postcranial remains. A trend toward increased encephalization may constrain the method's predictive power with respect to many, but not all, placental clades.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, J. F., Hall-Martin, A., and Russell, D. A. 1985. Long-bone circumference and weight in mammals, birds, and dinosaurs. Journal of Zoology 207:5361.Google Scholar
Anyonge, W. 1993. Body mass in large extant and extinct carnivores. Journal of Zoology 231:339350.Google Scholar
Aplin, K., and Archer, M., 1987. Recent advances in marsupial systematics, with a new, higher level classification of the Marsupialia. Pp. xvlxxiiin Archer, 1987.Google Scholar
Archer, M., ed. 1987. Possums and opossums: studies in evolution. Surrey Beatty, Sydney.Google Scholar
Archer, M., and Dawson, L., 1982. Revision of marsupial lions of the genus Thylacoleo Gervais (Thylacoleonidae, Marsupialia) and thylacoleonid evolution in the late Cainozoic. Pp. 477494in Archer, M., ed. Carnivorous marsupials, Vol. 1. Royal Zoological Society of New South Wales, Sydney.Google Scholar
Burness, G. P., Diamond, J., and Flannery, T. F., 2001. Dinosaurs dragons and dwarfs: the evolution of maximal body size. Proceedings of the National Academy of Sciences USA 98:1451814523.Google Scholar
Christiansen, P. 1999. What size were Arctodus simus and Ursus spelaeus (Carnivora: Ursidae)? Annales Zoologici Fennici 36:93102.Google Scholar
Egi, N. 2001. Body mass estimates in extinct mammals from limb bone dimensions: the case of North American hyaenodontids. Palaeontology 44:497528.Google Scholar
Finch, M. E., and Freedman, L. 1988. Functional morphology of the limbs of Thylacoleo carnifex Owen (Thylacoleonidae: Marsupialia). Australian Journal of Zoology 36: 251–72.Google Scholar
Flannery, T. F. 1994. The future eaters. New Holland, Sydney.Google Scholar
Gillespie, A. 1999. Diversity and evolutionary relationships of marsupial lions. Pp. 2122in The evolutionary history and diversity of Australian mammals. Australian Mammalogy 21: 1–45.Google Scholar
Gittleman, J. L. 1986. Carnivore brain size, behavioural ecology, and phylogeny. Journal of Mammalogy 67:2336.Google Scholar
Grand, T. I. 1983. The anatomy of growth and its relation to locomotor capacity in Macaca. In Eisenberg, J. F. and Kleiman, D. G., eds. Advances in the study of mammalian behavior. American Society of Mammalogists Special Publication 7:523.Google Scholar
Haight, J. R., and Murray, P. F. 1981. The cranial endocast of the early Miocene marsupial, Wynyardia bassiana: an assessment based upon comparisons with recent forms. Brain, Behaviour and Evolution 19:1736.Google Scholar
Haight, J. R., and Nelson, J. E. 1987. A brain that doesn't fit its skull: a comparative study of the brain and endocranium of the koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae). Pp. 331352in Archer, 1987.Google Scholar
Janis, C. M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodoids. Pp. 255300in Damuth, J. and MacFadden, B. J., eds. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.Google Scholar
Jerison, H. J. 1973. Evolution of the brain and intelligence. Academic Press, New York.Google Scholar
Jerison, H. J. 1983. The evolution of the mammalian brain as an information processing system. In Eisenberg, J. F. and Kleiman, D. G., eds. Advances in the study of mammalian behavior. America Society of Mammalogists Special Publication 7:632661.Google Scholar
Kelt, D. A., and Van Vuren, D. H. 2001. The ecology and macroecology of mammalian home range area. American Naturalist 157:637645.Google Scholar
Kozlowski, J., and Weiner, J. 1997. Interspecific allometries are by-products of body size optimization. American Naturalist 149:352380.Google Scholar
Legendre, S. 1989. Les communautés de mammifères du Paléogene (Eocene superieur et Oligocene) d'Europe occidentale: structures, milieux et évolution. Münchner Geowissenschaftlichen, Abhandlugen A 16:1110.Google Scholar
Lundberg, S., and Persson, L. 1993. Optimal body size and resource density. Journal of theoretical Biology 164:163180.Google Scholar
Martin, P. S. 1984. Prehistoric overkill: the global model. Pp. 354403in Martin, P. S. and Klein, R. G., eds. Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tuscon.Google Scholar
Miguel, C. de, and Henneberg, M. 1997. Encephalization of the koala, Phascolarctos cinereus. Australian Mammalogy 20:315320.Google Scholar
Moeller, H. F. 1973. Zur Kenntis der Schadelgestalt grober Raubbeutler (Dasyuridae Waterhouse, 1838) Eine allometrische Formanalyse. Zoologisher Jahrbuch Anatomie 91:257303.Google Scholar
Moeller, H. F. 1997. Der Beutelwolf. Westarp Wissenschaften, Magdeburg.Google Scholar
Murray, P., Wells, R., and Plane, M., 1987. The cranium of the Miocene thylacoleonid, Wakaleo vanderleuri [sic]: click go the shears—a fresh bite at thylacoleonid systematics. Pp. 433466in Archer, 1987.Google Scholar
Myers, T. J. 2001. Marsupial body mass prediction. Australian Journal of Zoology 49:99118.Google Scholar
Nagy, K. A. 2001. Food requirements of wild animals: predictive equations for free-living mammals, reptiles and birds. Nutrition Abstracts and Reviews B 71:21R32R.Google Scholar
Paddle, R. 2000. The last Tasmanian tiger: the history and extinction of the thylacine. Cambridge University Press, Cambridge.Google Scholar
Pagel, M. D., and Harvey, P. H. 1989. Taxonomic differences in the scaling of brain on body weight among mammals. Science 244:15891593.Google Scholar
Palomares, F., and Caro, T. M. 1999. Interspecific killing among mammalian carnivores. American Naturalist 153:492508.Google Scholar
Quiroga, J. C., and Dozo, M. T., 1988. The brain of Thylacosmilus atrox. Extinct South American sabre-toothed carnivore marsupial. Journal für Hirnforsch 29:573586.Google Scholar
Reynolds, P. S. 2002. How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy 83:321332.Google Scholar
Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important? Cambridge University Press, Cambridge.Google Scholar
Seebacher, F. 2001. A new method to calculate allometric length-mass relationships in dinosaurs. Journal of Vertebrate Paleontology 21:5160.Google Scholar
Seebacher, F. 2003. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29:105122.Google Scholar
Smith, R. J. 1984. Allometric scaling in comparative biology: problems of concept and method. American Journal of Physiology 246:R152R160.Google Scholar
Smith, R. J. 1993. Logarithmic transformation bias in allometry. American Journal of Physical Anthropology 90:215228.Google Scholar
Sokal, R. R., and Rohlf, F. J., 1981. Biometry, 2d ed.W. H. Freeman, New York.Google Scholar
Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores. Pp. 181205in Damuth, J. and MacFadden, B. J., eds. Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge.Google Scholar
Webb, R. E. 1998. Marsupial extinction: the carrying capacity argument. Antiquity 72:4655.Google Scholar
Wells, R. T., Horton, D. R., and Rogers, P., 1982. Thylacoleo carnifex Owen (Thylacoleonidae): marsupial carnivore? Pp. 573586in Archer, M., ed. Carnivorous marsupials, Vol. 1. Royal Zoological Society of New South Wales, Sydney.Google Scholar
Woods, J. T. 1956. The skull of Thylacoleo carnifex. Memoirs of the Queensland Museum 13:125140.Google Scholar
Wroe, S. 2001. Maximucinus muirheadae, gen. et sp. nov. (Thylacinidae, Marsupialia), from the Miocene of Riversleigh, northwestern Queensland, with estimates of body weights for fossil thylacinids. Australian Journal of Zoology 49:603614.Google Scholar
Wroe, S. 2002. A review of terrestrial mammalian and reptilian carnivore ecology in Australian fossil faunas and factors influencing their diversity: the myth of reptilian domination and its broader ramifications. Australian Journal of Zoology 50:124.Google Scholar
Wroe, S. 2003. Australian marsupial carnivores: An overview of recent advances in palaeontology. Pp. 103123in Jones, M., Dickman, C., and Archer, M., eds. Predators with pouches: the biology of carnivorous marsupials. CSIRO Publishing, Melbourne.Google Scholar
Wroe, S., Myers, T. J., Wells, R. T., and Gillespie, A. 1999. Estimating the weight of the Pleistocene Marsupial Lion (Thylacoleo carnifex: Thylacoleonidae): implications for the ecomorphology of a marsupial super-predator and hypotheses of impoverishment of Australian marsupial carnivore faunas. Australian Journal of Zoology 47:489498.Google Scholar
Wroe, S., Field, J., Fullagar, R., and Jermiin, L. 2002. Lost giants. Nature Australia 27:5461.Google Scholar
Wynne, C. D. L., and McLean, I. G. 1999. The comparative psychology of marsupials. Australian Journal of Psychology 51:111116.Google Scholar