Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T15:06:47.225Z Has data issue: false hasContentIssue false

Aerodynamics and thermoregulatory function of the dorsal sail of Edaphosaurus

Published online by Cambridge University Press:  08 April 2016

S. Christopher Bennett*
Affiliation:
Department of Systematics and Ecology and Natural History Museum, University of Kansas, Lawrence, Kansas 66045-2454

Abstract

Dorsal sails supported by hyperelongate neural spines of dorsal vertebrae were evolved by various tetrapods, but most work on their function has centered on the pelycosaur Dimetrodon, in which the sail has generally been interpreted as a thermoregulatory structure that would permit rapid warming in the morning and cooling during the hot midday. The pelycosaur Edaphosaurus differed from other sailed tetrapods in that the neural spines supporting the sail had laterally directed tubercles or cross-bars. Past interpretations of Edaphosaurus suggested that the cross-bars were embedded in a thick fat-storage structure or extended from a thin sail to enhance its utility for intraspecific display. However, wind tunnel modeling of air flow over a thin sail with laterally projecting cross-bars supports a thermoregulatory interpretation of the sail of Edaphosaurus. The cross-bars would produce a turbulent flow, which would increase the effectiveness of convective cooling. Measurements of heat flow in an instrumented model show that cross-bars increase heat loss from the sail. The cross-bars may have enabled Edaphosaurus to thermoregulate effectively with a smaller and lower dorsal sail than would have been required without them.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bakker, R. T. 1986. The dinosaur heresies. Kensington, New York.Google Scholar
Bramwell, C. D., and Fellgett, P. B. 1973. Thermal regulation in sail lizards. Nature 242:203205.Google Scholar
de Buffrenil, V., Farlow, J. O., and de Ricqles, A. 1984. Histological data on structure, growth and possible functions of Stegosaurus plates. pp. 3136In Reif, W.-E. and Westphal, F., eds. Third Symposium on Mesozoic Terrestrial Ecosystems, Short Papers. Attempto Verlag, Tübingen.Google Scholar
Farlow, J. O., Thompson, C. V., and Rosner, D. E. 1976. Plates of the dinosaur Stegosaurus: forced convection heat loss fins? Science 192:11231125.Google Scholar
Haack, S. 1986. A thermal model of the sailback pelycosaur. Paleobiology 12:450458.CrossRefGoogle Scholar
Kreith, F. 1973. Principles of heat transfer. Third Edition. Intext Educational Publishers, New York.Google Scholar
Lewis, G. E., and Vaughn, P. P. 1965. Early Permian vertebrates from the Cutler formation of the Placerville area, Colorado. U.S. Geological Survey Professional Paper 503C:C1C50.Google Scholar
McNab, B. K., and Auffenberg, W. 1976. The effect of large body size on the temperature regulation of the Komodo dragon, Varanus komodoensis. Comparative Biochemistry and Physiology 55A:345350.Google Scholar
Niklas, K. 1984. The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination. American Journal of Botany 71:356374.Google Scholar
Pivorunas, A. 1970. Allometry in the limbs and sail of Dimetrodon. . .Google Scholar
Rigby, J. K. Jr. 1989. Thermoregulation in large dinosaurs. Journal of Vertebrate Paleontology 9:36A.Google Scholar
Rodbard, S. 1949. On the dorsal sail of Dimetrodon. Copeia 1949:244.Google Scholar
Romer, A. S. 1927. Notes on the Permo-Carboniferous reptile Dimetrodon. Journal of Geology 35:673689.Google Scholar
Romer, A. S. 1948. Relative growth in pelycosaurian reptiles. pp. 4555in Du Toit, A. L., ed. Robert Broom Commemorative Volume, South Africa Royal Society Special Publication. Capetown.Google Scholar
Romer, A. S., and Price, L. I. 1940. Review of the Pelycosauria. Geological Society of America Special Paper 28:1538.Google Scholar
Stromer, E. 1915. Ergebnisse der Forschungsreisen Prof. E. Stromers in der Wüsten Ägyptens, II. 3. Das Original des Theropoden Spinosaurus aegyptiacus nov. gen. nov. spec. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung, N.F. 28:132.Google Scholar
Stromer, E. 1936. Ergebnisse der Forschungsreisen Prof. E. Stromers in der Wüsten Ägyptens, VII. Baharije-Kessel und/-Stufe mit deren Fauna und Flora. Eine erganzende Zusammenfassung. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung, N.F. 33:1102.Google Scholar
Taquet, P. 1975. Remarques sur l'évolution des Iguanodontides et l'origine des Hadrosaurides. Colloque international C. N. R. S. 218:504511.Google Scholar
Tracy, C. R., Turner, J. S., and Huey, R. B. 1986. A biophysical analysis of possible thermoregulatory adaptations in sailed pelycosaurs. pp. 195206In Hotton, N. III, MacLean, P. D., Roth, J. J., and Roth, E. C., eds. The ecology and biology of the mammal-like reptiles. Smithsonian Institution Press, Washington, D.C.Google Scholar
Vaughn, P. P. 1971. A Platyhystrix-like amphibian with fused vertebrae from the Upper Pennsylvanian of Ohio. Journal of Paleontology 45:464469.Google Scholar
Wheeler, P. E. 1978. Elaborate CNS cooling structures in large dinosaurs. Nature 275:441443.Google Scholar
Wright, P. G. 1984. Why do elephants flap their ears? South African Journal of Zoology 19:266269.CrossRefGoogle Scholar