Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T01:45:58.343Z Has data issue: false hasContentIssue false

Why do lower plants and animals biomineralize?

Published online by Cambridge University Press:  08 April 2016

Martin Brasier*
Affiliation:
Department of Geology, University of Hull, Hull HU6 7RX, England

Extract

Widespread concern about environmental pollution is putting a new question to the fossil record: How has the biosphere reacted to chemical changes in the past? Monera and Protoctista might be expected to provide valuable clues in this quest since their biomineral remains are generally formed in conditions closely related to the environment. But why do unicells biomineralize at all? It was with such questions in mind that an international symposium of the Systematics Association on “Biomineralization in Lower Plants and Animals” was held at Birmingham on April 15–19, 1985. Monerans, protoctistans, lichens, calcareous algae, and bryozoans were discussed in 36 papers, of which 23 are to be published in a volume by Oxford University Press. This volume, edited by Leadbeater and Riding (1986), will form a natural sequel to the papers in Miller et al. (1984) on mineral phases in biology and in Westbroek and de Jong (1983) on biomineralization and biological metal accumulation.

Type
Current Happenings
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, C. W. 1984. Report. P. 14. In: Monty, C. L., ed. Stromatolite Newsletter, 11.Google Scholar
Banks, D. A. 1985. A fossil hydrothermal worm assemblage from the Tynagh lead-zinc deposit in Ireland. Nature. 313:128131.Google Scholar
Bathurst, R. G. C. 1971. Carbonate sediments and their diagenesis. Elsevier; Amsterdam.Google Scholar
Brasier, M. D. 1979. The Cambrian radiation event. Pp. 103159. In: House, M. R., ed. The Origin of Major Invertebrate Groups. Systematics Association Special Volume 12. Academic Press; London.Google Scholar
Brasier, M. D. 1981. Sea level changes, facies changes and the Late Precambrian–Early Cambrian evolutionary explosion. Precamb. Res. 17:105123.Google Scholar
Brasier, M. D. 1982. Architecture and evolution of the foraminiferid test—a theoretical approach. Pp. 141. In: Banner, F. T. and Lord, A. R., eds. Approaches in Micropalaeontology. George Allen & Unwin; London.Google Scholar
Brasier, M. D. 1984. Some geometrical aspects of fusiform planispiral shape in larger Foraminifera. J. Micropalaeontol. 3:1115.Google Scholar
Caron, M. 1985. Cretaceous planktic forminifera. Pp. 1786. In: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton Stratigraphy. Cambridge Univ. Press; Cambridge.Google Scholar
Cloud, P. 1976. Beginnings of biospheric evolution and their biochemical consequences. Palaeobiology. 3:351382.Google Scholar
Cook, P. J. and Shergold, J. H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian Boundary. Nature. 308:231236.Google Scholar
de Graciansky, P. C., Deroo, G., Herbis, J. P., Montadert, L., Muller, C., Schaaf, A., and Sigaly, J. 1984. Ocean-wide stagnation episode in the Late Cretaceous. Nature. 308:346349.Google Scholar
Hancock, J. M., and Kaufman, E. G. 1979. The great transgressions of the Late Cretaceous. J. Geol. Soc. Lond. 136:175186.Google Scholar
Holser, W. T. 1977. Catastrophic chemical events in the history of the ocean. Nature. 267:403408.CrossRefGoogle Scholar
House, M. R. 1985a. A new approach to an absolute timescale from measurements of orbital cycles and sedimentary micro-rhythms. Nature. 315:721725.CrossRefGoogle Scholar
House, M. R. 1985b. Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary peturbations. Nature. 313:1722.Google Scholar
Hsu, K. J., Oberhansli, H., Gao, J. Y., Shu, Sun, Haihong, Chen, and Krahenbuhl, U. 1985. “Strangelove ocean“ before the Cambrian explosion. Nature. 316:809811.Google Scholar
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. Lond. 137:171180.Google Scholar
Kastner, M., Kushnir, J., and Anderson, G. E. 1983. Diagenetic relationships of dolostone-phosphorite-chert: a geochemical interpretation. Abstr. Programs Geol. Soc. Am. 15:607.Google Scholar
Kazmierczak, J., Ittekot, V., and Degens, E. T. 1985. Biocalcification through time: environmental challenge and cellular response. Palaeontol. Z. 59:1533.Google Scholar
Kerr, R. A. 1984. Carbon dioxide and the control of Ice Ages. Science. 223:10531054.CrossRefGoogle ScholarPubMed
Leadbeater, B. and Riding, R. 1986. Biomineralization in Lower Plants and Animals. Systematics Association Special Publication, 30. Oxford Univ. Press; Oxford.Google Scholar
Lowenstam, H. A. and Margulis, L. 1980. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. Biosystems. 12:2741.Google Scholar
Lovelock, J. 1979. Gaia. A New Look at Life on Earth. Oxford Univ. Press; Oxford.Google Scholar
Lucas, J. and Prevot, L. 1984. Synthèse de l'apatite par voie bacterienne a partir de matière organique et de divers carbonates de calcium dans eaux douce et marine naturelles. Chem. Geol. 42:101118.Google Scholar
Mackenzie, F. T. and Pigott, J. D. 1981. Tectonic controls of Phanerozoic sedimentary rock cycling. J. Geol. Soc. Lond. 138:183196.Google Scholar
Miller, A., Phillips, D., and Williams, R. J. P., eds. 1984. Mineral Phases in Biology. Royal Society; London.Google Scholar
Nazarov, B. B. 1975. Lower and middle Paleozoic radiolarians of Kazakhstan. Trudy. Geol. Inst. Akad. Nauk. SSR, 275. (In Russian).Google Scholar
Perch-Nielsen, K. 1985. Mesozoic calcareous nannofossils. Pp. 329426. In: Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton Stratigraphy. Cambridge Univ. Press; Cambridge.Google Scholar
Piper, J. D. 1982. The Precambrian palaeomagnetic record: the case for the Proterozoic supercontinent. Earth Planet. Sci. Lett. 59:6189.Google Scholar
Poyarkov, B. V. 1979. Evolution and Distribution of Devonian Foraminifera. Izdat. Nauka; Moscow. (In Russian).Google Scholar
Ramsbottom, W. H. C. 1979. Rates of transgression and regression in the Carboniferous of NW Europe. J. Geol. Soc. Lond. 136:147154.Google Scholar
Ramsay, A. T. S., ed. 1977. Oceanic Micropalaeontology. 2 vols. Academic Press; London.Google Scholar
Riding, R. 1982. Cyanophyte calcification and changes in ocean chemistry. Nature. 299:814815.Google Scholar
Riding, R. 1985. Calcareous algae near the Precambrian/Cambrian Boundary. Nerc News J. 3:1112.Google Scholar
Rubey, W. W. 1964. Geological history of seawater. Pp. 164. In: Brancasio, P. J. and Cameron, A. G. W., eds. The Origin and Evolution of Atmospheres and Oceans. Wiley; New York.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature. 305:1922.Google Scholar
Schopf, J. W. 1977. Biostratigraphic usefulness of stromatolitic Precambrian microbiotas: a preliminary analysis. Precamb. Res. 5:143173.Google Scholar
Shackleton, N. J. and Pisias, N. G. 1985. Atmospheric carbon dioxide, orbital forcing and climate. Am. Geophys. Un. Geophys. Monogr. 32:303317.Google Scholar
Simkiss, K. 1964. Phosphates as crystal poisons of calcification. Biol. Rev. 39:487505.CrossRefGoogle ScholarPubMed
Simkiss, K. 1977. Biomineralization and detoxification. Calc. Tiss. Res. 24:199200.Google Scholar
Tucker, M. 1982. Precambrian dolomites: petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology. 10:712.Google Scholar
Weisburd, S. 1985. Sci. News. 127:20.Google Scholar
Westbroek, P. and de Jong, E. W., eds. 1983. Biomineralization and Biological Metal Accumulation. Reidel; Dordrecht.Google Scholar
Wilkinson, B. H. 1980. Biomineralization, palaeoceanography and evolution of calcareous marine organisms. Geology. 8:265267.Google Scholar
Xiang, Liwen, ed. 1981. The Cambrian System of China. Geological Publishing House; Beijing. (In Chinese).Google Scholar