Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:37:43.409Z Has data issue: false hasContentIssue false

The taphonomic clock in fish otoliths

Published online by Cambridge University Press:  06 September 2021

Konstantina Agiadi*
Affiliation:
Department of Palaeontology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria. E-mail: [email protected], [email protected]
Michele Azzarone
Affiliation:
Department of Palaeontology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria. E-mail: [email protected], [email protected]
Quan Hua
Affiliation:
Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia. E-mail: [email protected]
Darrell S. Kaufman
Affiliation:
School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, U.S.A. E-mail: [email protected]
Danae Thivaiou
Affiliation:
Department of Historical Geology and Paleontology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis 15784, Athens, Greece. E-mail: [email protected]
Paolo G. Albano
Affiliation:
Department of Palaeontology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria. E-mail: [email protected], [email protected]
*
*Corresponding author.

Abstract

Paleobiological and paleoecological interpretations rely on constraining the temporal resolution of the fossil record. The taphonomic clock, that is, a correlation between the alteration of skeletal material and its age, is an approach for quantifying time-averaging scales. We test the taphonomic clock hypothesis for marine demersal and pelagic fish otoliths from a 10–40 m depth transect on the Mediterranean siliciclastic Israeli shelf by radiocarbon dating and taphonomic scoring. Otolith ages span the last ~8000 yr, with considerable variation in median and range along the transect. Severely altered otoliths, contrary to pristine otoliths, are likely to be older than 1000 yr. For pelagic fish otoliths, at 30 m depth, taphonomic degradation correlates positively with postmortem age. In contrast, no correlation occurs for demersal fishes at 10 and 30 m depth, mostly because of the paucity of very young pristine (<150 yr) otoliths, possibly due to a drop in production over the last few centuries. Contrary to molluscan and brachiopod shells, young otoliths at these depths are little affected and do not show a broad spectrum of taphonomic damage, because those that derive from predation are excreted in calcium- and phosphate-rich feces forming an insoluble crystallic matrix that increases their preservation potential. At 40 m depth, all dated otoliths are very young but rather damaged because of locally chemically aggressive sediments, thus showing no correlation between taphonomic grade and postmortem age. Our results show that local conditions and the target species population dynamics must be considered when testing the taphonomic clock hypothesis.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy. E-mail: [email protected]

References

Agiadi, K., and Albano, P. G.. 2020. Holocene fish assemblages provide baseline data for the rapidly changing eastern Mediterranean. The Holocene 30:14381450.CrossRefGoogle Scholar
Agiadi, K., Triantaphyllou, M., Girone, A., Karakitsios, V., and Dermitzakis, M.. 2010. Paleobathymetric interpretation of the fish otoliths from the Lower–Middle Quaternary deposits of Kephallonia and Zakynthos Islands (Ionian Sea, western Greece). Rivista Italiana Di Paleontologia e Stratigrafia 116:6378.Google Scholar
Agiadi, K., Triantaphyllou, M., Girone, A., and Karakitsios, V.. 2011. The Early Quaternary palaeobiogeography of the eastern Ionian deep-sea teleost fauna: a novel palaeocirculation approach. Palaeogeography, Palaeoclimatology, Palaeoecology 306:228242.CrossRefGoogle Scholar
Agiadi, K., Antonarakou, A., Kontakiotis, G., Kafousia, N., Moissette, P., Cornée, J.-J., Manoutsoglou, E., and Karakitsios, V.. 2017. Connectivity controls on the Late Miocene eastern Mediterranean fish fauna. International Journal of Earth Sciences 106:11471159.CrossRefGoogle Scholar
Agiadi, K., Girone, A., Koskeridou, E., Moissette, P., Cornée, J.-J., and Quillévéré, F.. 2018. Pleistocene marine fish invasions and paleoenvironmental reconstructions in the eastern Mediterranean. Quaternary Science Reviews 196:8099.CrossRefGoogle Scholar
Agiadi, K., Giamali, C., Girone, A., Moissette, P., Koskeridou, E., and Karakitsios, V.. 2020. The Zanclean marine fish fauna and palaeoenvironmental reconstruction of a coastal marine setting in the eastern Mediterranean. Palaeobiodiversity and Palaeoenvironments 100:773792.CrossRefGoogle Scholar
Aguilera, O., Schwarzhans, W., Moraes-Santos, H., and Nepomuceno, A.. 2014. Before the flood: Miocene Otoliths from eastern Amazon Pirabas Formation reveal a Caribbean-type fish fauna. Journal of South American Earth Sciences 56:422446.CrossRefGoogle Scholar
Albano, P. G. 2014. Comparison between death and living land mollusk assemblages in six forested habitats in northern Italy. Palaios 29:338347.CrossRefGoogle Scholar
Albano, P. G., and Sabelli, B.. 2011. Comparison between death and living molluscs assemblages in a Mediterranean infralittoral off-shore reef. Palaeogeography, Palaeoclimatology, Palaeoecology 310:206215.CrossRefGoogle Scholar
Albano, P. G., Filippova, N., Steger, J., Kaufman, D. S., Tomašových, A., Stachowitsch, M., and Zuschin, M.. 2016. Oil platforms in the Persian (Arabian) Gulf: living and death assemblages reveal no effects. Continental Shelf Research 121:2134.CrossRefGoogle Scholar
Albano, P. G., Hua, Q., Kaufman, D., Tomašových, A., Zuschin, M., and Agiadi, K.. 2020. Radiocarbon dating supports bivalve-fish age coupling along a bathymetric gradient in high-resolution paleoenvironmental studies. Geology 48:589593.CrossRefGoogle Scholar
Allen, A. P., Kosnik, M. A., and Kaufman, D. S.. 2013. Characterizing the dynamics of amino acid racemization using time-dependent reaction kinetics: a Bayesian approach to fitting age-calibration models. Quaternary Geochronology 18:6377.CrossRefGoogle Scholar
Anderson, M. J., and Willis, T. J.. 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511525.CrossRefGoogle Scholar
Andrus, C. F. T., Crowe, D. E., Sandweiss, D. H., Reitz, E. J., and Romanek, C. S.. 2002. Otolith Δ18O record of mid-Holocene sea surface temperatures in Peru. Science 295:15081511.CrossRefGoogle Scholar
Avnaim-Katav, S., Hyams-Kaphzan, O., Milker, Y., and Almogi-Labin, A.. 2015. Bathymetric zonation of modern shelf benthic foraminifera in the Levantine basin, eastern Mediterranean Sea. Journal of Sea Research 99:97106.CrossRefGoogle Scholar
Belanger, C. L. 2011. Evaluating taphonomic bias of paleoecological data in fossil benthic foraminiferal assemblages. Palaios 26:767778.CrossRefGoogle Scholar
Bertucci, T., Aguilera, O., Vasconcelos, C., Nascimento, G., Marques, G., Macario, K., Queiroz de Albuquerque, C., Lima, T., and Belém, A.. 2018. Late Holocene palaeotemperatures and palaeoenvironments in the southeastern Brazilian coast inferred from otolith geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 503:4050.CrossRefGoogle Scholar
Best, M. M. R., and Kidwell, S. M.. 2000a. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. I. Environmental variation in shell condition. Paleobiology 26:80102.2.0.CO;2>CrossRefGoogle Scholar
Best, M. M. R., and Kidwell, S. M.. 2000b. Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. II. Effect of bivalve life habits and shell types. Paleobiology 26:103115.2.0.CO;2>CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C.. 1986. Comparative taphonomy; a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1:207227.CrossRefGoogle Scholar
Bright, J., Kaufman, D., Whitacre, K. E., Ebert, C., Southon, J. R., Albano, P. G., Flores, C., Frazer, T. K., Hua, Q., Kowalewski, M., Martinelli, J. C., Oakley, D., Parker, W. G., Retelle, M., Ritter, M. N., Rivadeneira, M. M, Scarponi, D., Yares, Y., Zuschin, M., and Kaufman, D. S.. 2021. comparing rapid and standard 14C ages from an Assortment of Biogenic carbonates. Radiocarbon 63:387403.CrossRefGoogle Scholar
Bush, S. L., Santos, G. M., Xu, X., Southon, J. R., Thiagarajan, N., Hines, S. K., and Adkins, J. F.. 2013. Simple, rapid, and cost effective: a screening method for 14C analysis of small carbonate samples. Radiocarbon 55:631640.CrossRefGoogle Scholar
Callender, W. R., Powell, E. N., and Staff, G. M.. 1994. Taphonomic rates of molluscan shells placed in autochthonous assemblages on the Louisiana continental slope. Palaios 9:6073.CrossRefGoogle Scholar
Callender, W. R., Staff, G. M., Parsons-Hubbard, K. M., Powell, E. N., Rowe, G. T., Walker, S. E., Brett, C. E., Raymond, A., Carlson, D. D., White, S., and Heise, E. A.. 2002. Taphonomic trends along a forereef slope: Lee Stocking Island, Bahamas. I. Location and water depth. Palaios 17:5065.Google Scholar
Carroll, M., Kowalewski, M., Simões, M. G., and Goodfriend, G. A.. 2003. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology 29:381402.2.0.CO;2>CrossRefGoogle Scholar
Cernohorsky, N. H., Horsak, M., and Cameron, R. D.. 2010. Land snail species richness and abundance at small scales: the effects of distinguishing between live individuals and empty shells. Journal of Conchology 40:233.Google Scholar
Cristini, P. A., and De Francesco, C. G.. 2019. Taphonomic field experiment in a freshwater shallow lake: alteration of gastropod shells below the sediment–water interface. Journal of Molluscan Studies 85:404413.10.1093/mollus/eyz026CrossRefGoogle Scholar
Degens, E. T., Deuser, W. G., and Haedrich, R. L.. 1969. Molecular structure and composition of fish otoliths. Marine Biology 2:105113.CrossRefGoogle Scholar
Flessa, K. W. 1993. Time-averaging and temporal resolution in Recent marine shelly faunas. Short Courses in Paleontology 6:933.CrossRefGoogle Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H.. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.CrossRefGoogle Scholar
Frey, R. W., and Howard, J. D.. 1986. Taphonomic characteristics of offshore mollusk shells, Sapelo Island, Georgia. Tulane Studies in Geology and Paleontology 19. https://journals.tulane.edu/tsgp/article/view/1054.Google Scholar
Froese, R., and Pauly, D., eds. 2021. FishBase. www.fishbase.org, version 02/2021.Google Scholar
Girone, A. 2005. Response of otolith assemblages to sea-level fluctuations at the lower Pleistocene Montalbano Jonico Section (southern Italy). Bolletino della Societa Paleontologica Italiana 44:3545.Google Scholar
Girone, A., Nolf, D., and Cappetta, H.. 2006. Pleistocene fish otoliths from the Mediterranean basin: a synthesis. Geobios 39:651671.CrossRefGoogle Scholar
Golik, A. 1993. Indirect evidence for sediment transport on the continental shelf off Israel. Geo-Marine Letters 13:159164.CrossRefGoogle Scholar
Goodman-Tchernov, B. N., Dey, H. W., Reinhardt, E. G., McCoy, F., and Mart, Y.. 2009. Tsunami waves generated by the Santorini eruption reached eastern Mediterranean shores. Geology 37:943946.CrossRefGoogle Scholar
Gottschalk, J., Szidat, S., Michel, E., Mazaud, A., Salazar, G., Battaglia, M., Lippold, J., and Jaccard, S. L.. 2018. Radiocarbon measurements of small-size foraminiferal samples with the mini carbon dating system (MICADAS) at the University of Bern: implications for paleoclimate reconstructions. Radiocarbon 60:469491.CrossRefGoogle Scholar
Harnik, P. G., Torstenson, M. L., and Williams, M. A.. 2017. Assessing the effects of anthropogenic eutrophication on marine bivalve life history in the northern Gulf of Mexico. Palaios 32:678688.CrossRefGoogle Scholar
Hassan, G. S., Tietze, E., Cristini, P. A., and De Francesco, C. G.. 2014. Differential preservation of freshwater diatoms and mollusks in Late Holocene sediments: paleoenvironmental implications. Palaios 29:612623.10.2110/palo.2014.016CrossRefGoogle Scholar
Henderson, S. W., and Frey, R. W.. 1986. Taphonomic redistribution of mollusk shells in a tidal inlet channel, Sapelo Island, Georgia. Palaios 1:316.CrossRefGoogle Scholar
Hollocher, K., and Hollocher, T. C.. 2012. Early process in the fossilization of terrestrial feces to coprolites, and microstructure preservation. In: Vertebrate Coprolites. Bulletin of the New Mexico Museum of Natural History and Science 57:79–92. Albuquerque: New Mexico Museum of Natural History & Science.Google Scholar
Hyams-Kaphzan, O., Almogi-Labin, A., Sivan, D., and Benjamini, C.. 2008. Benthic foraminifera assemblage change along the southeastern Mediterranean inner shelf due to fall-off of Nile-derived siliciclastics. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 248:315344.10.1127/0077-7749/2008/0248-0315CrossRefGoogle Scholar
Inman, D. L., and Jenkins, S. A.. 1984. The Nile littoral cell and man's impact on the coastal zone of the southeastern Mediterranean. Pp. 1600–1617 in 19th International Conference on Coastal Engineering, Houston, Tex. https://doi.org/10.1061/9780872624382.110.CrossRefGoogle Scholar
Jobling, M., and Breiby, A.. 1986. The use and abuse of fish otoliths in studies of feeding habits of marine piscivores. Sarsia 71:265274.CrossRefGoogle Scholar
Jones, W. A., and Checkley, D. M.. 2019. Mesopelagic fishes dominate otolith record of past two millennia in the Santa Barbara basin. Nature Communications 10:4564.CrossRefGoogle ScholarPubMed
Kidwell, S. M. 1993. Patterns of time-averaging in the shallow marine fossil record. Short Courses in Paleontology 6:275300.CrossRefGoogle Scholar
Kidwell, S. M. 1998. Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30:977995.CrossRefGoogle Scholar
Kidwell, S. M., Best, M. M. R., and Kaufman, D. S.. 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33:729732.Google Scholar
Klompmaker, A. A., Portell, R. W., and Frick, M. G.. 2017. Comparative experimental taphonomy of eight marine arthropods indicates distinct differences in preservation potential. Palaeontology 60:773794.CrossRefGoogle Scholar
Kowalewski, M., Flessa, K. W., and Aggen, J. A.. 1994. Taphofacies analysis of recent shelly cheniers (beach ridges), northeastern Baja California, Mexico. Facies 31:209.CrossRefGoogle Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W.. 1998. High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Landini, W., and Sorbini, C.. 2005. Evolutionary trends in the Plio-Pleistocene ichthyofauna of the Mediterranean basin: nature, timing and magnitude of the extinction events. Quaternary International 131:101107.CrossRefGoogle Scholar
Lin, C. H., de Garcia, B., Pierotti, M. E. R., Andrews, A. H., Griswold, K., O'Dea, A.. 2019. Reconstructing reef fish communities using fish otoliths in coral reef sediments. PLoS ONE 14:e0218413.CrossRefGoogle ScholarPubMed
Martin, R. E., Wehmiller, J. F., Harris, M. S., and Liddell, W. D.. 1996. Comparative taphonomy of bivalves and foraminifera from Holocene tidal flat sediments, Bahia La Choya, Sonora, Mexico (northern Gulf of California): taphonomic grades and temporal resolution. Paleobiology 22:8090.CrossRefGoogle Scholar
Martini, E. 1965. Die Fischfauna von Sieblos/Rhön (Oligozän). Senckenbergiana Lethaea 46:291314.Google Scholar
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R.B., Simpson, G. L., Solymos, P., Stevens, M. H. H, Szoecs, E., and Wagner, H.. 2015. Vegan: community ecology package. https://cran.r-project.org/web/packages/vegan, accessed 10 February 2021.Google Scholar
Olszewski, T. D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.2.0.CO;2>CrossRefGoogle Scholar
Petró, S. M., Ritter, M. N., Gómez Pivel, M. A., and Coimbra, J. C.. 2018. Surviving in the water column: defining the taphonomically active zone in pelagic systems. Palaios 33:8593.CrossRefGoogle Scholar
Powell, E. N., and Davies, D. J.. 1990. When is an “old” shell really old? Journal of Geology 98:823844.CrossRefGoogle Scholar
Powell, E. N., Parsons-Hubbard, K. M., Callender, W. R., Staff, G. M., Rowe, G. T., Brett, C. E., Walker, S. E., Raymond, A., Carlson, D. D., White, S., and Heise, E. A.. 2002. Taphonomy on the continental shelf and slope: two-year trends—Gulf of Mexico and Bahamas. Palaeogeography, Palaeoclimatology, Palaeoecology 184:135.CrossRefGoogle Scholar
Powell, E. N., Callender, W. R., Staff, G. M., Parsons-Hubbard, K. M., Brett, C. E., Walker, S. E., Raymond, A., and Ashton-Alcox, K. A.. 2008. Molluscan shell condition after eight years on the sea floor—taphonomy in the Gulf of Mexico and Bahamas. Journal of Shellfish Research 27:191225.CrossRefGoogle Scholar
Powell, E. N., Staff, G. M., Callender, W. R., Ashton-Alcox, K. A., Brett, C.. E., Parsons-Hubbard, K. M., Walker, S. E., and Raymond, A.. 2011. Taphonomic degradation of molluscan remains during thirteen years on the continental shelf and slope of the northwestern Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 312:209232.CrossRefGoogle Scholar
Price, G. D., Wilkinson, D., Hart, M. B., Page, K. N., and Grimes, S. T.. 2009. Isotopic analysis of coexisting Late Jurassic fish otoliths and molluscs: implications for upper-ocean water temperature estimates. Geology 37:215218.CrossRefGoogle Scholar
R Development Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ritter, M. N., Erthal, F., Kosnik, M. A., Coimbra, J. C., and Kaufman, D. S.. 2017. Spatial variation in the temporal resolution of subtropical shallow-water molluscan death assemblages. Palaios 32:572583.CrossRefGoogle Scholar
Ritter, M. N., Erthal, F., and Coimbra, J. C.. 2019. Depth as an overarching environmental variable modulating preservation potential and temporal resolution of shelly taphofacies. Lethaia 52:4456.CrossRefGoogle Scholar
Sandweiss, D. H., Andrus, C. F. T., Kelley, A. R., Maasch, K. A., Reitz, E. J., and Roscoe, P. B.. 2020. Archaeological climate proxies and the complexities of reconstructing Holocene El Niño in coastal Peru. Proceedings of the National Academy of Sciences USA 117:82718279.CrossRefGoogle ScholarPubMed
Schulz-Mirbach, T., Olbinado, M., Rack, A., Mittone, A., Bravin, A., Melzer, R. R., Ladich, F., and Heß, M.. 2018. In-situ visualization of sound-induced otolith motion using hard X-ray phase contrast imaging. Scientific Reports 8:3121.CrossRefGoogle ScholarPubMed
Schwarzhans, W. W., Murphy, T. D., and Frese, M.. 2018. Otoliths in situ in the stem teleost Cavenderichthys talbragarensis (Woodward, 1895), otoliths in coprolites, and isolated otoliths from the Upper Jurassic of Talbragar, New South Wales, Australia. Journal of Vertebrate Paleontology 38:e1539740.CrossRefGoogle Scholar
Schwarzhans, W., Agiadi, K., and Carnevale, G.. 2020. Late Miocene–Early Pliocene evolution of Mediterranean gobies and their environmental and biogeographic significance. Rivista Italiana di Paleontologia e Stratigrafia 126:657724.Google Scholar
Speyer, S. E., and Brett, C. E.. 1986. Trilobite taphonomy and Middle Devonian taphofacies. Palaios 1:312327.CrossRefGoogle Scholar
Tomašových, A., and Kidwell, S. M.. 2017. Nineteenth-century collapse of a benthic marine ecosystem on the open continental shelf. Proceedings of the Royal Society of London B 284:20170328.Google ScholarPubMed
Tomašových, A., and Zuschin, M.. 2009. Variation in brachiopod preservation along a carbonate shelf-basin transect (Red Sea and Gulf of Aden): environmental sensitivity of taphofacies. Palaios 24:697716.CrossRefGoogle Scholar
Tomašových, A., Kidwell, S. M., Barber, R. F., and Kaufman, D. S.. 2014. Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology 42:819822.CrossRefGoogle Scholar
Tomašových, A., Kidwell, S. M., and Barber, R. F.. 2016. Inferring skeletal production from time-averaged assemblages: skeletal loss pulls the timing of production pulses towards the modern period. Paleobiology 42:5476.CrossRefGoogle Scholar
Tomašových, A., Schlogl, J., Biron, A., Hudackova, N., and Mikus, T.. 2017. Taphonomic clock and bathymetric dependence of cephalopod preservation in bathyal, sediment-starved environments. Palaios 32:135152.CrossRefGoogle Scholar
Tomašových, A., Gallmetzer, I., Haselmair, A., Kaufman, D. S., Kralj, M., Cassin, D., Zonta, R., and Zuschin, M.. 2018. Tracing the effects of eutrophication on molluscan communities in sediment cores: outbreaks of an opportunistic species coincide with reduced bioturbation and high frequency of hypoxia in the Adriatic Sea. Paleobiology 44:575602.CrossRefGoogle Scholar
Wehmiller, J. F., York, L. L., and Bart, M. L.. 1995. Amino acid racemization geochronology of reworked Quaternary mollusks on U.S. Atlantic coast beaches: implications for chronostratigraphy, taphonomy, and coastal sediment transport. Marine Geology 124:303337.Google Scholar
Yanes, Y. 2012. Shell taphonomy and fidelity of living, dead, Holocene, and Pleistocene land snail assemblages. Palaios 27:127136.CrossRefGoogle Scholar