Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T02:55:27.320Z Has data issue: false hasContentIssue false

Role of photosymbiosis and biogeography in the diversification of early Paleogene acarininids (planktonic foraminifera)

Published online by Cambridge University Press:  08 February 2016

Frédéric Quillévéré
Affiliation:
Institut des Sciences de l'Evolution, cc064, Université Montpellier II, 34095 Montpellier cedex 05, France. E-mail: [email protected]
Richard. D. Norris
Affiliation:
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543. E-mail: [email protected]
Issam Moussa
Affiliation:
Institut des Sciences de l'Evolution, cc064, Université Montpellier II, 34095 Montpellier cedex 05, France. E-mail: [email protected]
William. A. Berggren
Affiliation:
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543. E-mail: [email protected]

Abstract

Radiations are commonly believed to be linked to the evolutionary appearance of a novel morphology or ecology. Previous studies have demonstrated a close relationship between the evolutionary appearance of algal photosymbiosis in planktonic foraminifera and evolutionary diversification of Paleogene photosymbiotic clades. For example, the evolution of photosymbiosis was synchronous with the abrupt evolution of four major groups of Paleogene planktonic foraminifera including two clades within the genus Morozovella, as well as the genera Acarinina and Igorina. Our new isotopic and biogeographic data suggest that the acarininids evolved from a photosymbiotic ancestor (which we identify as Praemurica inconstans or early representatives of Praemurica uncinata), but also demonstrate that photosymbiosis did not trigger an immediate species-level radiation in this group. Instead, the acarininids remained a low-diversity taxon restricted to high latitudes for nearly 1.8 million years before radiating ecologically and taxonomically. The eventual radiation of the acarininids is tied to an expansion of their geographic range into the mid and low latitudes. Biogeographic analyses of modern plankton suggest that high-latitude environments may be less conducive to establishing radiations simply because there are fewer niches available to be filled than there are in the tropics. Accordingly, the acarininids may have initially failed to diversify because they started off in environments that presented few opportunities to sustain a large radiation. The high-latitude origin of the acarininids continued to retard their overall diversification until they were able to develop strategies that allowed them to expand into tropical environments and fully exploit their photosymbiotic ecology.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aubry, M.-P. 1995. From chronology to stratigraphy: interpreting the lower and middle Eocene stratigraphic record in the Atlantic Ocean. Pp. 213274in Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlations. SEPM (Society for Sedimentary Geology), Tulsa, Okla.Google Scholar
, A. W. H. 1982. Biology of planktonic foraminifera. Pp. 5189in Buzas, M. A., Gupta, B. K. Sen, and Broadhead, T. W., eds. Foraminifera—notes for a short course. University of Tennessee, Knoxville.Google Scholar
Berger, W. H., Killingly, J. S., and Vincent, E. 1978. Stable isotopes in deep sea carbonates: box core ERDC-92, west equatorial Pacific. Oceanologica Acta 1:203216.Google Scholar
Berggren, W. A., Aubry, M.-P., van Fossen, M., Kent, D. V., Norris, R. D., and Quillévéré, F. 2000. Integrated Paleocene calcareous plankton magnetobiochronology, and stable isotope stratigraphy: DSDP Site 384 (NW Atlantic Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology 159:151.CrossRefGoogle Scholar
Berggren, W. A., and Norris, R. D. 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology 43(Suppl. 1).CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. Pp. 129212in Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds. Geochronology, time scales, and global stratigraphic correlations: a unified temporal framework for an historical geology. SEPM (Society for Sedimentary Geology), Tulsa, Okla.Google Scholar
Bermudes, D., and Margulis, L. 1987. Symbiont acquisition as neoseme: origin of species and higher taxa. Symbiosis 4:185198.Google ScholarPubMed
Boersma, A., and Silva, I. Premoli 1983. Paleocene planktonic foraminiferal biogeography and the paleoceanography of the Atlantic Ocean. Micropaleontology 29:355381.CrossRefGoogle Scholar
Boersma, A., Shackleton, N. J., Hall, M. A., and Given, Q. C. 1979. Carbon and oxygen isotope records at DSDP Site 384 (North Atlantic) and some Paleocene paleotemperatures and carbon isotope variations in the Atlantic Ocean. In Tucholke, B. E. and Vogts, P. R., eds. Initial Reports of the Deep Sea Drilling Project 43:695–717. U.S. Government Printing Office, Washington, D.C.Google Scholar
Brummer, G. J. A., and Kroon, D. 1988. Planktonic foraminifers as tracers of ocean-climate history. Free University Press, Amsterdam.Google Scholar
Corfield, R. M., and Cartlidge, J. E. 1991. Isotopic evidence for the depth stratification of fossil and recent Globigerina: a review. Historical Biology 5:3763.CrossRefGoogle Scholar
D'Hondt, S., and Zachos, J. C. 1993. On stable isotopic variation and earliest Paleocene planktonic foraminifera. Paleoceanography 8:527547.CrossRefGoogle Scholar
D'Hondt, S., Zachos, J. C., and Schultz, G. 1994. Stable isotopic signals and photosymbiosis in late Paleocene planktic foraminifera. Paleobiology 20:391406.CrossRefGoogle Scholar
Douglas, R. G., and Savin, S. M. 1978. Oxygen isotope evidence for the depth stratification of Tertiary and Cretaceous planktic foraminifera. Marine Micropaleontology 3:175196.CrossRefGoogle Scholar
Emiliani, C. 1954. Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. American Journal of Science 252:269324.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C. 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin 64:13151325.CrossRefGoogle Scholar
Galbrun, B. 1992. Magnetostratigraphy of upper Cretaceous and lower Tertiary sediments, Sites 761 and 762, Exmouth Plateau, Northwest Australia. In von Rad, U., Haq, B. U., et al., eds. Scientific Results of the Ocean Drilling Program 122:699–716. College Station, Tex.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Kelly, D. C., Arnold, A. J., and Parker, W. C. 1996. Paedomorphosis and the origin of the Paleogene planktonic foraminiferal genus Morozovella. Paleobiology 22:266281.CrossRefGoogle Scholar
Killingley, J. S. 1983. Effects of diagenetic recrystallisation on 18O/16O values of deep sea sediments. Nature 301:594596.CrossRefGoogle Scholar
Margulis, L., and Fester, R. 1991. Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge.Google ScholarPubMed
Norris, R. D. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461480.CrossRefGoogle Scholar
Norris, R. D. 1998. Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals and foraminifera. in Norris, R. D. and Corfield, R. M., eds. Isotope paleobiology and paleoecology. The Paleontological Society Papers 4:68100.CrossRefGoogle Scholar
Olsson, R. K. 1970. Paleocene planktonic foraminiferal biostratigraphy and paleozoogeography of New Jersey. Journal of Paleontology 44:589597.Google Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T. 1999. Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology 85.CrossRefGoogle Scholar
Pearson, P., Shackleton, N. J., and Hall, M. A. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP 523, South Atlantic. Journal of Foraminiferal Research 23:123140.CrossRefGoogle Scholar
Quillévéré, F., Norris, R. D., and Aubry, M.-P. 1998. Foraminifères planctoniques paléocènes de l'ODP Site 761: magnétobiostratigraphie, analyses isotopiques (δ18O, δ13C) et implications paléoécologiques. Actes de la Réunion des Sciences de la Terre 99:180.Google Scholar
Quillévéré, F. R. D., Norris, , Berggren, W. A., and Aubry, M.-P. 2000. 59. 2 Ma and 56.5 Ma: two significant moments in the evolution of acarininids (planktonic foraminifera). Geologiska Föreningens i Stockholm Förhandlingar 122:131132.Google Scholar
Roy, K., et al. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.CrossRefGoogle ScholarPubMed
Rutherford, S., D'Hondt, S., and Prell, W. 1999. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400:749753.CrossRefGoogle Scholar
Schlich, R., Wise, S. W. Jr., et al. 1989. Site 750. Initial Reports of the Ocean Drilling Program 120:277337. College Station, Tex.Google Scholar
Schneider, C. E., and Kennett, J. P. 1996. Isotopic evidence for interspecies habitat differences during evolution of the Neogene planktonic foraminiferal clade Globoconella. Paleobiology 22:282303.CrossRefGoogle Scholar
Shackleton, N. J., Corfield, R. M., and Hall, M. A. 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. Journal of Foraminiferal Research 15:321336.CrossRefGoogle Scholar
Siesser, W. G., and Bralower, T. J. 1992. Cenozoic calcareous nannofossil biostratigraphy on the Exmouth Plateau, eastern Indian Ocean. In von Rad, U., Haq, B. U., et al. Scientific Results of the Ocean Drilling Program 122:601624. College Station, Tex.CrossRefGoogle Scholar
Smith, D. C., and Douglas, A. E. 1987. The biology of symbiosis. Edward Arnold, London.Google Scholar
Spero, H. J. 1992. Do planktonic foraminifera accurately record shifts in the carbon isotopic composition of sea water σCO2? Marine Micropaleontology 19:275285.CrossRefGoogle Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable isotope variability in the planktonic foraminifer Globigerinoides sacculifer: results for laboratory experiments. Marine Micropaleontology 22:193232.CrossRefGoogle Scholar
Spero, H. J., and Williams, D. F. 1988. Extracting environmental information from planktonic foraminiferal δ13C data. Nature 335:717719.CrossRefGoogle Scholar
Spero, H. J., Lerche, I., and Williams, D. F. 1991. Opening the carbon isotope “vital effect” black box, 2: quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography 6:639655.CrossRefGoogle Scholar
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497500.CrossRefGoogle Scholar
Wei, K. Y., Zhang, Z. W., and Wray, C. 1992. Shell ontogeny of Globorotalia inflata (I): growth dynamics and ontogenetic stages. Journal of Foraminiferal Research 22:318327.CrossRefGoogle Scholar
Wu, G., and Berger, W. H. 1989. Planktonic foraminifera: differential dissolution and the Quaternary stable isotope record in the west equatorial Pacific. Paleoceanography 4:181198.CrossRefGoogle Scholar