Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T18:30:31.782Z Has data issue: false hasContentIssue false

Responses of plant populations and communities to environmental changes of the late Quaternary

Published online by Cambridge University Press:  26 February 2019

Stephen T. Jackson
Affiliation:
Department of Botany, Aven Nelson Building, University of Wyoming, Laramie, Wyoming 82071. E-mail: [email protected]
Jonathan T. Overpeck
Affiliation:
Institute for the Study of Planet Earth and Department of Geosciences, University of Arizona, Tucson, Arizona 85721. E-mail: [email protected]

Abstract

The environmental and biotic history of the late Quaternary represents a critical junction between ecology, global change studies, and pre-Quaternary paleobiology. Late Quaternary records indicate the modes and mechanisms of environmental variation and biotic responses at timescales of 101–104 years. Climatic changes of the late Quaternary have occurred continuously across a wide range of temporal scales, with the magnitude of change generally increasing with time span. Responses of terrestrial plant populations have ranged from tolerance in situ to moderate shifts in habitat to migration and/or extinction, depending on magnitudes and rates of environmental change. Species assemblages have been disaggregated and recombined, forming a changing array of vegetation patterns on the landscape. These patterns of change are characteristic of terrestrial plants and animals but may not be representative of all other life-forms or habitats. Complexity of response, particularly extent of species recombination, depends in part on the nature of the underlying environmental gradients and how they change through time. Environmental gradients in certain habitats may change in relatively simple fashion, allowing long-term persistence of species associations and spatial patterns. Consideration of late Quaternary climatic changes indicates that both the rate and magnitude of climatic changes anticipated for the coming century are unprecedented, presenting unique challenges to the biota of the planet.

Type
Research Article
Copyright
Copyright © 2000 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, C. C. 1902. Postglacial origin and migrations of the life of the northeastern United States. Journal of Geography 1:303310, 355–357.Google Scholar
Allen, C. D., and Breshears, D. D. 1998. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proceedings of the National Academy of Sciences USA 95:1483914842.Google Scholar
Allen, J. R. M., Brandte, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J. F. W., Nowaczyk, N. R., Oberhänsli, H., Watts, W. A., Wulf, S., and Zolitschka, B. 1999. Rapid environmental changes in southern Europe during the last glacial period. Nature 400:740743.Google Scholar
Allison, T. D., Moeller, R. K., and Davis, M. B. 1986. Pollen in laminated sediments provides evidence for a mid-Holocene forest pathogen outbreak. Ecology 67:11011105.Google Scholar
Anderson, R. S. 1996. Postglacial biogeography of Sierra lodgepole pine (Pinus contorta var. murrayana) in California. Écoscience 3:343351.Google Scholar
Archer, S. 1989. Have southern Texas savannas been converted to woodlands in recent history? American Naturalist 134:545561.Google Scholar
Ashworth, A. C. 1997. The response of beetles to Quaternary climate changes. Pp. 119127 in Huntley et al. 1997.Google Scholar
Austin, M. P. 1990. Community theory and competition in vegetation. Pp. 215238 in Grace, J. B. and Tilman, D., eds. Perspectives on plant competition. Academic Press, San Diego.Google Scholar
Austin, M. P. 1992. Modelling the environmental niche of plants: implications for plant community response to elevated CO2 levels. Australian Journal of Botany 40:615630.Google Scholar
Austin, M. P., Nicholls, A. O., and Margules, C. R. 1990. Measurement of the realized quantitative niche: environmental niches of five Eucalyptus species. Ecological Monographs 60:161177.Google Scholar
Austin, M. P., Pausas, J. G., and Noble, I. R. 1997. Modelling environmental and temporal niches of eucalypts. Pp. 129150 in Williams, J. E. and Woinarski, J. C. Z., eds. Eucalypt ecology: individuals to ecosystems. Cambridge University Press, Cambridge.Google Scholar
Baker, R. G., Bettis, E. A. III, Schwert, D. P., Horton, D. G., Chumbley, C. A., Gonzalez, L. A., and Reagan, M. K. 1996. Holocene paleoenvironments of northeast Iowa. Ecological Monographs 66:203234.Google Scholar
Bartlein, P. J. 1997. Past environmental changes: characteristic features of Quaternary climate variations. Pp. 1129 in Huntley et al. 1997.Google Scholar
Bartlein, P. J., Prentice, I. C., and Webb, T. III. 1986. Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography 13:3557.Google Scholar
Bartlein, P. J., Anderson, K. H., Anderson, P. M., Edwards, M. E., Mock, C. J., Thompson, R. S., Webb, R. S., Webb, T. III, and Whitlock, C. 1998. Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17:549585.Google Scholar
Bennett, K. D. 1985. The spread of Fagus grandifolia across eastern North America during the last 18 000 years. Journal of Biogeography 12:147164.Google Scholar
Bennett, K. D. 1990. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16:1121.Google Scholar
Bennett, K. D. 1997. Evolution and ecology: the pace of life. Cambridge University Press, Cambridge.Google Scholar
Bennett, K. D., Tzedakis, P. C., and Willis, K. J. 1991. Quaternary refugia of north European trees. Journal of Biogeography 18:103115.Google Scholar
Berger, A., and Loutre, M. F. 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10:297317.Google Scholar
Bernabo, J. C. 1981. Quantitative estimates of temperature changes over the last 2700 years in Michigan based on pollen data. Quaternary Research 15:143159.Google Scholar
Betancourt, J. L. 1990. Late Quaternary biogeography of the Colorado Plateau. Pp. 259292 in Betancourt et al. 1990.Google Scholar
Betancourt, J. L., Van Devender, T. R., and Martin, P. S. 1990a. Synthesis and prospectus. Pp. 435447 in Betancourt et al. 1990b.Google Scholar
Betancourt, J. L., Van Devender, T. R., and Martin, P. S., eds. 1990b. Packrat middens: the last 40,000 years of biotic change. University of Arizona Press, Tucson.Google Scholar
Betancourt, J. L., Schuster, W. S., Mitton, J. B., and Anderson, R. S. 1991. Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. Ecology 72:16851697.Google Scholar
Betancourt, J. L., Rylander, K. A., Peñalba, C., and McVickar, J. L. 2000. Late Quaternary vegetation history of Rough Canyon, south-central New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology (in press).Google Scholar
Bhiry, N., and Filion, L. 1996. Mid-Holocene hemlock decline in eastern North America linked with phytophagous insect activity. Quaternary Research 45:312320.Google Scholar
Björkman, L., and Bradshaw, R. 1996. The immigration of Fagus sylvatica L. and Picea abies (L.) Karst. into a natural forest stand in southern Sweden during the last 2000 years. Journal of Biogeography 23:235244.Google Scholar
Bradley, R. S. 1999. Paleoclimatology: reconstructing climates of the Quaternary, 2d ed. Academic Press, San Diego.Google Scholar
Bradley, R. S., and Jones, P. D. 1992. Climate since A.D. 1500. Routledge, London.Google Scholar
Broecker, W. S. 1997. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278:15821588.Google Scholar
Brubaker, L. B. 1975. Postglacial forest patterns associated with till and outwash in north-central upper Michigan. Quaternary Research 5:499527.Google Scholar
Bush, M. B., Colinvaux, P. A., Wiemann, M. C., Piperno, D. R., and Liu, K.-B. 1990. Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quaternary Research 34:330345.Google Scholar
Campbell, I. D., and McAndrews, J. H. 1993. Forest disequilibrium caused by rapid Little Ice Age cooling. Nature 366:336338.Google Scholar
Clark, J. S. 1998. Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. American Naturalist 152:204224.Google Scholar
Clark, J. S., Royall, P. D., and Chumbley, C. 1996. The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York. Ecology 77:21482166.Google Scholar
Clark, J. S., Fastie, C. L., Hurtt, G., Jackson, S. T., Johnson, W. C., King, G. A., Lewis, M., Lynch, J., Pacala, S., Prentice, I. C., Schupp, G., Webb, T. III, and Wyckoff, P. 1998. Dispersal theory offers solutions to Reid's paradox of rapid plant migration. BioScience 48:1324.Google Scholar
Clements, F. E. 1904. The development and structure of vegetation. Contributions from the Botanical Survey of Nebraska, No. 7. University of Nebraska, Lincoln.Google Scholar
Clements, F. E. 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington Publication No. 242.Google Scholar
Clements, F. E. 1934. The relict method in dynamic ecology. Journal of Ecology 22:3968.Google Scholar
COHMAP. 1988. Climatic changes of the last 18,000 years: observations and model simulations. Science 241:10431052.Google Scholar
Cole, K. L. 1990. Late Quaternary vegetation gradients through the Grand Canyon. Pp. 240258 in Betancourt et al. 1990.Google Scholar
Colinvaux, P. A., De Oliveira, P. E., Moreno, J. E., Miller, M. C., and Bush, M. B. 1996. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:8588.Google Scholar
Coope, G. R. 1995. Insect faunas in ice age environments: why so little extinction? Pp. 5574 in Lawton, J. H. and May, R. M., eds. Extinction rates. Oxford University Press, Oxford.Google Scholar
Crowley, T. J. 1990. Are there any satisfactory geologic analogs for a future greenhouse warming? Journal of Climate 3:12821292.Google Scholar
Crowley, T. J., and North, G. R. 1991. Paleoclimatology. Oxford University Press, New York.Google Scholar
Cuffey, K. M., and Clow, G. D. 1997. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial cycle. Journal of Geophysical Research 102:26, 383–26, 396.Google Scholar
Curtis, J. T. 1959. The vegetation of Wisconsin: an ordination of plant communities. University of Wisconsin Press, Madison.Google Scholar
Cwynar, L. C., and MacDonald, G. M. 1987. Geographical variation in lodgepole pine in relation to population history. American Naturalist 134:668673.Google Scholar
Darwin, C. 1859. On the origin of species by means of natural selection: or the preservation of favoured races in the struggle for life. John Murray, London.Google Scholar
Davis, M. B. 1976. Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13:1326.Google Scholar
Davis, M. B. 1981a. Outbreaks of forest pathogens in Quaternary history. Fourth international conference on palynology, Lucknow (1976–1977) 3:216228.Google Scholar
Davis, M. B. 1981b. Quaternary history and the stability of forest communities. Pp. 132154 in West, D. C., Shugart, H. H., and Botkin, D. B., eds. Forest succession: concepts and applications. Springer, New York.Google Scholar
Davis, M. B. 1990. Climatic change and the survival of forest species. Pp. 99110 in Woodwell, G. M., ed. The earth in transition: patterns and processes of biotic impoverishment. Cambridge University Press, Cambridge.Google Scholar
Davis, M. B., Schwartz, M. W., and Woods, K. 1991. Detecting a species limit from pollen in sediments. Journal of Biogeography 18:653668.Google Scholar
Davis, M. B., Sugita, S., Calcote, R. R., Ferrari, J. B., and Frelich, L. E. 1994. Historical development of alternate communities in a hemlock-hardwood forest in northern Michigan, USA. Pp. 1939 in Edwards, P. J., May, R., and Webb, N. R., eds. Largescale ecology and conservation biology. Blackwell Scientific, Oxford.Google Scholar
Davis, R. B., and Jacobson, G. L. Jr. 1985. Late glacial and early Holocene landscapes in northern New England and adjacent areas of Canada. Quaternary Research 23:341368.Google Scholar
Delcourt, P. A., Delcourt, H. R., Brister, R. C., and Lackey, L. E. 1980. Quaternary vegetation history of the Mississippi Embayment. Quaternary Research 13:111132.Google Scholar
Diaz, H. F., and Markgraf, V., eds. 2000. El Niño and the Southern Oscillation: multiscale variability and global and regional impacts. Cambridge University Press, Cambridge.Google Scholar
Eckstein, R. L., Karlsson, P. S., and Weih, M. 1999. Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist 143:177189.Google Scholar
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J.-M., and Morgan, V. I. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research 101(D2):41154128.Google Scholar
Fairbanks, R. G. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger-Dryas event and deep-ocean circulation. Nature 342:637–617.Google Scholar
FAUNMAP Working Group. 1994. FAUNMAP: a database documenting Late Quaternary distributions of mammal species in the United States. Illinois State Museum Scientific Papers 25.Google Scholar
FAUNMAP Working Group. 1996. Spatial responses of mammals to Late Quaternary environmental fluctuations. Science 272:16011606.Google Scholar
Fawcett, P. J., Agustsdottir, A. M., Alley, R. B., and Shuman, C. A. 1997. The Younger Dryas termination and North Atlantic deep water formation: insights from climate model simulations and Greenland ice cores. Paleoceanography 12:2328.Google Scholar
Forbes, E. 1846. On the connexion between the distribution of the existing fauna and flora of the British Isles, and the geological changes which have affected their area, especially during the epoch of the northern drift. Memoirs of the Geological Survey of Great Britain 1:336432.Google Scholar
Foster, D. R., and Zebryk, T. M. 1993. Long-term vegetation dynamics and disturbance history of a Tsuga-dominated forest in New England. Ecology 74:982998.Google Scholar
Gaudreau, D. C. 1988. Paleoecological interpretation of geographic patterns in pollen data: spruce and birch in northeastern North America. Bulletin of the Buffalo Society of Natural Sciences 33:1529.Google Scholar
Gaudreau, D. C., Jackson, S. T., and Webb, T. III. 1989. Spatial scale and sampling strategy in paleoecological studies of vegetation patterns in mountainous terrain. Acta Botanica Neerlandica 38:369390.Google Scholar
Gear, A. J., and Huntley, B. 1991. Rapid changes in the range limits of Scots pine 4000 years ago. Science 251:544547.Google Scholar
Gillespie, J. H. 1991. The causes of molecular evolution. Oxford University Press, Oxford.Google Scholar
Givens, C. R., and Givens, F. M. 1987. Age and significance of fossil white spruce (Picea glauca), Tunica Hills, Louisiana-Mississippi. Quaternary Research 27:283296.Google Scholar
Gleason, H. A. 1917. The structure and development of the plant association. Bulletin of the Torrey Botanical Club 43:463481.Google Scholar
Gleason, H. A. 1923. The vegetational history of the Middle West. Annals of the Association of American Geographers 12:3985.Google Scholar
Gleason, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53:726.Google Scholar
Gleason, H. A. 1927. Further views on the succession-concept. Ecology 8:299326.Google Scholar
Good, R. O’ D. 1931. A theory of plant geography. New Phytologist 30:149171.Google Scholar
Graumlich, L. J. 1994. Long-term vegetation change in mountain environments: paleoecological insights into modern vegetation dynamics. Pp. 167179 in Beniston, M., ed. Mountain environments in changing climates. Routledge, London.Google Scholar
Gray, A. 1858. Diagnostic characters of new species of phenogamous plants, collected in Japan by Charles Wright, Botanist of the U.S. North Pacific Exploring Expedition (Published by request of Captain John Rodgers, Commander of the Expedition). With observations upon the relations of the Japanese flora to that of North America, and of other parts of the Northern Temperate Zone. Memoirs of the American Academy of Arts and Sciences 6:377452.Google Scholar
Griesemer, J. R. 1992. Niche: historical perspectives. Pp. 231240 in Fox-Keller, E. and Lloyd, E. A., eds. Keywords in evolutionary biology. Harvard University Press, Cambridge.Google Scholar
Hastings, J. R., and Turner, R. M. 1965. The changing mile: an ecological study of vegetation change with time in the lower mile of an arid and semiarid region. University of Arizona Press, Tucson.Google Scholar
Hays, J. D., Imbrie, J., and Shackleton, N. J. 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194:11211132.Google Scholar
Hessl, A. E., and Baker, W. L. 1997. Spruce and fir regeneration and climate in the forest-tundra ecotone of Rocky Mountain National Park, Colorado, U.S.A. Arctic and Alpine Research 29:173183.Google Scholar
Hewitt, G. M. 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68:87112.Google Scholar
Houghton, J. T., Meira-Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K., eds. 1996. Climate change 1995: the science of climate change. Cambridge University Press, Cambridge.Google Scholar
Hughen, K. A., Overpeck, J. T., Peterson, L. C., and Trumbore, S. 1996. Abrupt deglacial climatic change in the tropical Atlantic. Nature 380:5154.Google Scholar
Hughen, K. A., Overpeck, J. T., Lehman, S. J., Kashgarian, M., Peterson, L. C., and Alley, R. 1998. Deglacial 14C calibration, activity and climate from a marine varve record. Nature 391:6568.Google Scholar
Hunter, M. L. Jr., Jacobson, G. L. Jr., and Webb, T. III. 1988. Paleoecology and the coarse-filter approach to maintaining biological diversity. Conservation Biology 2:375385.Google Scholar
Huntley, B. 1988. Glacial and Holocene vegetation history: Europe. Pp. 341383 in Huntley and Webb 1988.Google Scholar
Huntley, B. 1990a. Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13,000 years. Quaternary Research 33:360376.Google Scholar
Huntley, B. 1990b. European post-glacial forests: compositional changes in response to climatic change. Journal of Vegetation Science 1:507518.Google Scholar
Huntley, B. 1990c. European vegetation history: palaeovegetation maps from pollen data—13 000 yr BP to present. Journal of Quaternary Science 5:103122.Google Scholar
Huntley, B. 1990d. Lessons from climates of the past. Pp. 133148 in Leggett, J., ed. Global warming: the Greenpeace report. Oxford University Press, Oxford.Google Scholar
Huntley, B. 1991. How plants respond to climate change: migration rates, individualism and the consequences for plant communities. Annals of Botany 67(Suppl. 1):1522.Google Scholar
Huntley, B. 1996. Quaternary palaeoecology and ecology. Quaternary Science Reviews 15:591606.Google Scholar
Huntley, B. 1999. The dynamic response of plants to environmental change and the resulting risks of extinction. Pp. 6985 in Mace, G. M., Balmford, A., and Ginsberg, J. R., eds. Conservation in a changing world. Cambridge University Press, Cambridge.Google Scholar
Huntley, B., and Birks, H. J. B. 1983. An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, Cambridge.Google Scholar
Huntley, B., and Webb, T. III, eds. 1988. Vegetation history. Kluwer Academic, Dordrecht.Google Scholar
Huntley, B., and Webb, T. III, eds. 1989. Migration: species’ response to climatic variations caused by changes in the earth's orbit. Journal of Biogeography 16:519.Google Scholar
Huntley, B., Bartlein, P. J., and Prentice, I. C. 1989. Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. Journal of Biogeography 16:551560.Google Scholar
Huntley, B., Cramer, W., Morgan, A. V., Prentice, H. C., and Allen, J. R. M., eds. 1997. Past and future rapid environmental changes: the spatial and evolutionary responses of terrestrial biota. Springer, New York.Google Scholar
Hutchinson, G. E. 1958. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:425427.Google Scholar
Hutchinson, G. E. 1978. An introduction to population ecology. Yale University Press, New Haven, Conn.Google Scholar
Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R. 1992. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701738.Google Scholar
Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R. 1993. On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography 8:699735.Google Scholar
Jablonski, D., and Sepkoski, J. J. Jr. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:13671378.Google Scholar
Jackson, J. C. B. 1992. Pleistocene perspectives on coral reef community structure. American Zoologist 32:719731.Google Scholar
Jackson, S. T. 1989. Postglacial vegetational changes along an elevational gradient in the Adirondack Mountains (New York): a study of plant macrofossils. New York State Museum Bulletin 465.Google Scholar
Jackson, S. T., and Givens, C. R. 1994. Late Wisconsinan vegetation and environment of the Tunica Hills region, Louisiana / Mississippi. Quaternary Research 41:316325.Google Scholar
Jackson, S. T., and Weng, C. 1999. Late Quaternary extinction of a tree species in eastern North America. Proceedings of the National Academy of Sciences USA 96:1384713852.Google Scholar
Jackson, S. T., and Whitehead, D. R. 1991. Holocene vegetation patterns in the Adirondack Mountains. Ecology 72:641653.Google Scholar
Jackson, S. T., Overpeck, J. T., Webb, T. III, Keattch, S. E., and Anderson, K. H. 1997. Mapped plant macrofossil and pollen records of Late Quaternary vegetation change in eastern North America. Quaternary Science Reviews 16:170.Google Scholar
Jackson, S. T., Webb, R. S., Anderson, K. H., Overpeck, J. T., Webb, T. III, Williams, J. W., and Hansen, B. C. S. 2000. Vegetation and environment in eastern North America during the Last Glacial Maximum. Quaternary Science Reviews 19:489508.Google Scholar
Jacobson, G. L. Jr., and Grimm, E. C. 1986. A numerical analysis of Holocene forest and prairie vegetation in central Minnesota. Ecology 76:958966.Google Scholar
Jacobson, G. L. Jr., Webb, T. III, and Grimm, E. C. 1987. Patterns and rates of vegetation change during the deglaciation of eastern North America. Pp. 277288 in Ruddiman, W. F. and Wright, H. E. Jr., eds. North America and adjacent oceans during the last deglaciation. Geology of North America, Vol. K-3. Geological Society of America, Boulder, Colo.Google Scholar
James, F. C., Johnston, R. F., Warner, N. O., Niemi, G. J., and Boecklen, W. J. 1984. The Grinnellian niche of the wood thrush. American Naturalist 124:1747.Google Scholar
Johnson, W. C., and Webb, T. III. 1989. The role of blue jays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. Journal of Biogeography 16:561571.Google Scholar
Joussaume, S., Taylor, K. E., Braconnot, P., Mitchell, J. F. B., Kutzbach, J. E., Harrison, S. P., Prentice, I. C., Broccoli, A. J., Abe-Ouchi, A., Bartlein, P. J., Bonfils, C., Dong, B., Guiot, J., Herterich, K., Hewitt, C. P., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Loutre, M. F., Masson, V., McAvaney, B., McFarlane, N., Noblet, N. de, Peltier, W. R., Peterschmitt, J. Y., Pollard, D., Rind, D., Royer, J. F., Schlesinger, M. E., Syktus, J., Thompson, S., Valdes, P., Vettoretti, G., Webb, R. S., and Wyputta, U. 1999. Monsoon changes for 6000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters 26:859862.Google Scholar
Kerwin, M., Overpeck, J. T., Webb, R. S., DeVernal, A., Rind, D. H., and Healy, R. J. 1999. The role of oceanic forcing in mid-Holocene Northern Hemisphere climatic change. Paleoceanography 14:200210.Google Scholar
King, G. A., and Herstrom, A. A. 1997. Holocene tree migration rates objectively determined from fossil pollen data. Pp. 91101 in Huntley et al. 1997.Google Scholar
Kullman, L. 1995. Holocene tree-limit and climate history from the Scandes Mountains, Sweden. Ecology 76:24902502.Google Scholar
Kullman, L. 1996. Norway spruce present in the Scandes Mountains, Sweden at 8000 BP: new light on Holocene tree spread. Global Ecology and Biogeography Letters 5:94101.Google Scholar
Kullman, L. 1998a. Non-analogous tree flora in the Scandes Mountains, Sweden, during the early Holocene—macrofossil evidence of rapid geographic spread and response to paleoclimate. Boreas 27:153161.Google Scholar
Kullman, L. 1998b. Palaeoecological, biogeographical and palaeoclimatological implications of early Holocene immigration of Larix sibirica Ledeb. into the Scandes Mountains, Sweden. Global Ecology and Biogeography Letters 7:181188.Google Scholar
Kullman, L. 1998c. The occurrence of thermophilous trees in the Scandes Mountains during the early Holocene: evidence for a diverse tree flora from macroscopic remains. Journal of Ecology 86:421428.Google Scholar
Kutzbach, J. E., and Webb, T. III. 1991. Late Quaternary climatic and vegetational change in eastern North America: concepts, models, and data. Pp. 175217 in Shane, L. C. K. and Cushing, E. J., eds. Quaternary landscapes. University of Minnesota Press, Minneapolis.Google Scholar
Kutzbach, J. E., and Webb, T. III. 1993. Conceptual basis for understanding Late-Quaternary climates. Pp. 511 in Wright, H. E. Jr., Kutzbach, J. E., Webb, T. III, Ruddiman, W. F., Street-Perrott, F. A., and Bartlein, P. J., eds. 1993. Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis.Google Scholar
Kutzbach, J. E., Guetter, P. J., Behling, P. J., and Selin, R. 1993. Simulated climatic changes: results of the COHMAP climate-model experiments. Pp. 2493 in Wright, H. E. Jr., Kutzbach, J. E., Webb, T. III, Ruddiman, W. F., Street-Perrott, F. A., and Bartlein, P. J., eds. 1993. Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis.Google Scholar
Kutzbach, J. E., Gallimore, R., Harrison, S., Behling, P., Selin, R., and Laarif, F. 1998. Climate and biome simulations for the past 21,000 years. Quaternary Science Reviews 17:473506.Google Scholar
Laird, K. R., Fritz, S. C., Grimm, E. C., and Mueller, P. G. 1996. Century-scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains. Limnology and Oceanography 41:890902.Google Scholar
Lanner, R. M., and Van Devender, T. R. 1998. The recent history of pinyon pines in the American Southwest. Pp. 171182 in Richardson, D. M., ed. Ecology and biogeography of Pinus. Cambridge University Press, Cambridge.Google Scholar
Leibold, M. A. 1996. The niche concept revisited: mechanistic models and community context. Ecology 76:13711382.Google Scholar
Livingstone, D. A. 1993. Evolution of African climate. Pp. 455472 in Goldblatt, P., ed. Biological relationships between Africa and South America. Yale University Press, New Haven, Conn.Google Scholar
Lloyd, A. H., and Graumlich, L. J. 1997. Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78:11991210.Google Scholar
Luckman, B. H., Holdsworth, G., and Osborn, G. D. 1993. Neoglacial glacier fluctuations in the Canadian Rockies. Quaternary Research 39:144153.Google Scholar
Lyell, C. 1832. Principles of geology, Vol. 2. John Murray, London.Google Scholar
Lyford, M. E., Betancourt, J. L., and Jackson, S. T. 2000. Holocene vegetation and climate history of the northern Big Horn Basin, Montana. Quaternary Research, in review.Google Scholar
Mack, R. N. 1981. Invasion of Bromus tectorum L. into western North America: an ecological chronicle. Agro-Ecosystems 7:145165.Google Scholar
Mack, R. N. 1986. Alien plant invasion into the Intermountain West: a case history. Pp. 191213 in Mooney, H. A. and Drake, J. A., eds. Ecology of biological invasions of North America and Hawaii. Springer, New York.Google Scholar
MacPhee, R. D. E., ed. 1999. Extinctions in near time: causes, contexts, and consequences. Plenum, New York.Google Scholar
Maguire, B. 1973. Niche response structure and the analytical potentials of its relationship to the habitat. American Naturalist 107:213246.Google Scholar
Mann, M. E., Bradley, R. S., and Hughes, M. K. 1999. Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophysical Research Letters 26:759762.Google Scholar
Mann, M. E., Gille, E., Bradley, R. S., Hughes, M. K., Overpeck, J., Keimig, F. T., and Gross, W. 2000. Global temperature patterns in past centuries: an interactive presentation. Earth Interactions (in press).Google Scholar
Martin, P. S., and Klein, R. G., eds. 1984. Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson.Google Scholar
Martinson, D. G., Bryan, K., Ghil, M., Hall, M. M., Karl, T. R., Sarachik, E. S., Sorooshian, S., and Talley, L. D., eds. 1995. Natural climate variability on decade-to-century time scales. National Academy Press, Washington, D.C. Google Scholar
Mast, J. N., Veblen, T. T., and Hodgson, M. E. 1997. Tree invasion within a pine/grassland ecotone: an approach with historic aerial photography and GIS modeling. Forest Ecology and Management 93:181194.Google Scholar
Mast, J. N., Veblen, T. T., and Linhart, Y. B. 1998. Disturbance and climatic influences on age structure of ponderosa pine at the pine / grassland ecotone, Colorado Front Range. Journal of Biogeography 25:743755.Google Scholar
McDowell, P. F., Webb, T. III, and Bartlein, P. J. 1990. Long-term environmental change. Pp. 143162 in Turner, B. L. II, Clark, W. C., Kates, R. W., Richards, J. F., Mathews, J. T., and Meyer, W. B., eds. The earth as transformed by human action. Cambridge University Press, Cambridge.Google Scholar
Millspaugh, S. H., Whitlock, C., and Bartlein, P. J. 2000. Variations in fire frequency and climate over the past 17 000 yr in central Yellowstone National Park. Geology 28:211214.Google Scholar
Mitton, J. B. 1997. Selection in natural populations. Oxford University Press, Oxford.Google Scholar
Mitton, J. B., Kreiser, B. R., and Latta, R. G. 2000. Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Molecular Ecology (in press).Google Scholar
Nowak, C. L., Nowak, R. S., Tausch, R. J., and Wigand, P. E. 1994a. A 30 000 year record of vegetation dynamics at a semi-arid locale in the Great Basin. Journal of Vegetation Science 5:579590.Google Scholar
Nowak, C. L., Nowak, R. S., Tausch, R. J., and Wigand, P. E. 1994b. Tree and shrub dynamics in northwestern Great Basin woodland and shrub steppe during the Late-Pleistocene and Holocene. American Journal of Botany 81:265277.Google Scholar
Overpeck, J. T. 1987. Pollen time series and Holocene climate variability of the midwest United States. Pp. 137143 in Berger, W. H. and Labeyrie, L. D., eds. Abrupt climatic change. D. Reidel, Dordrecht.Google Scholar
Overpeck, J. T. 1993. The role and response of continental vegetation in the global climate system. Pp. 221238 in Eddy, J. A. and Oeschger, H., eds. Global changes in the perspective of the past. Wiley, New York.Google Scholar
Overpeck, J. T. 1995. Paleoclimatology and climate system dynamics. Reviews of Geophysics 33:863871.Google Scholar
Overpeck, J. T., Bartlein, P. J., and Webb, T. III. 1991. Potential magnitude of future vegetation change in eastern North America: comparisons with the past. Science 254:692695.Google Scholar
Overpeck, J. T., Webb, R. S., and Webb, T. III. 1992. Mapping eastern North American vegetation changes of the past 18 ka: noanalogs and the future. Geology 20:10711074.Google Scholar
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., and Zielinski, G. 1997. Arctic environmental change of the last four centuries. Science 278:12511256.Google Scholar
Pandolfi, J. M. 1996. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152176.Google Scholar
Parrish, J. T. 1998. Interpreting pre-Quaternary climate from the geologic record. Columbia University Press, New York.Google Scholar
Parsons, D. J., Swetnam, T. W., and Christensen, N. L., eds. 1999. Historical variability concepts in ecosystem management. Ecological Applications 94:11771277.Google Scholar
Peattie, D. C. 1922. The Atlantic Coastal Plain element in the flora of the Great Lakes. Rhodora 24:5788.Google Scholar
Petit, J. R., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M., Jouzel, J. Raynaud, D., and Barkov, N. I. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429436.Google Scholar
Preece, R. C. 1997. The spatial response of non-marine Mollusca to past climate changes. Pp. 163177 in Huntley et al. 1997.Google Scholar
Premoli, A., Chischilly, S., and Mitton, J. B. 1994. Genetic variation and the establishment of new populations of pinyon pine. Biodiversity and Conservation 3:331340.Google Scholar
Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L., and Hamilton, D. A. Jr. 1999. Genetic responses to climate for Pinus contorta in British Columbia: niche breadth, climate change, and reforestation. Ecological Monographs 69:375407.Google Scholar
Rind, D., Peteet, D., Broecker, W. S., McIntyre, A., and Ruddiman, W. F. 1986. Impact of cold North Atlantic sea surface temperatures on climate: implications for the Younger Dryas cooling (11–10k). Climate Dynamics 1:133.Google Scholar
Robertson, A. D., Overpeck, J. T., Rind, D., Mosley-Thompson, E., Zielinski, G. A., Lean, J. L., Koch, D., Penner, J. E., Tegen, I., and Healy, R. 2000. Hypothesized climate forcing time series for the last 500 years. Journal of Geophysical Research (in press).Google Scholar
Roy, K., Valentine, J. W., Jablonski, D., and Kidwell, S. M. 1996. Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends in Ecology and Evolution 11:458463.Google Scholar
Sinclair, W. T., Morman, J. D., and Ennos, R. A. 1999. The postglacial history of Scots pine (Pinus sylvestris) in western Europe: evidence from mitochondrial DNA variation. Molecular Ecology 8:8388.Google Scholar
Smith, W. K., and Brewer, C. A. 1994. The adaptive importance of shoot and crown architecture in conifer trees. American Naturalist 143:165169.Google Scholar
Smith, W. K., Vogelmann, T. C., DeLucia, E. H., Bell, D. T., and Shepherd, K. A. 1997. Leaf form and photosynthesis. BioScience 47:785793.Google Scholar
Spear, R. W., Davis, M. B., and Shane, L. C. K. 1994. Late Quaternary history of low- and mid-elevation vegetation in the White Mountains of New Hampshire. Ecological Monographs 64:85109.Google Scholar
Steinger, T., Körner, C., and Schmid, B. 1996. Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105:9499.Google Scholar
Stuart, A. J. 1991. Mammalian extinctions in the Late Pleistocene of Northern Eurasia and North America. Biological Reviews 66:453562.Google Scholar
Swetnam, T. W., and Betancourt, J. L. 1998. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate 11:31283147.Google Scholar
Swetnam, T. W., Allen, C. D., and Betancourt, J. L. 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications 94:11891206.Google Scholar
Szeicz, J. M., and MacDonald, G. M. 1995. Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada. Journal of Ecology 83:873885.Google Scholar
Taylor, K. C., Lamorey, G. W., Doyle, G. A., Alley, R. B., Grootes, P. M., Mayewski, P. A., White, J. W. C., and Barlow, L. K. 1993. The “flickering switch” of late Pleistocene climate change. Nature 361:432436.Google Scholar
Terry, R. G., Nowak, R. S., and Tausch, R. J. 2000. Variation in chloroplast and nuclear ribosomal DNA in Utah juniper (Juniperus osteosperma, Cupressaceae): Evidence for interspecific gene flow. American Journal of Botany 87:250258.Google Scholar
Thompson, R. S. 1988. Western North America. Vegetation dynamics in the western United States: modes of response to climatic fluctuations. Pp. 415458 in Huntley and Webb 1988.Google Scholar
Thompson, R. S. 1990. Late Quaternary vegetation and climate in the Great Basin. Pp. 200239 in Betancourt et al. 1990.Google Scholar
Thompson, R. S., Anderson, K. H., and Bartlein, P. J. 1999. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America. United States Geological Survey Professional Paper 1650.Google Scholar
Transeau, E. N. 1903. On the geographic distribution and ecological relations of the bog plant societies of North America. Botanical Gazette 36:401420.Google Scholar
Valentine, J. W., and Jablonski, D. 1993. Fossil communities: compositional variation at many time scales. Pp. 341349 in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Van Devender, T. R. 1990. Late Quaternary vegetation and climate of the Sonoran Desert, United States and Mexico. Pp. 134163 in Betancourt et al. 1990.Google Scholar
Vose, R. S., Schmoyer, R. L., Steurer, P. M., Peterson, T. C., Heim, R., Karl, T. R., and Eischeid, J. K. 1992. The global historical climatology network: long-term monthly temperature, precipitation, sea level pressure, and station pressure data. Data Set NDP-041, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn.Google Scholar
Waters, E. R., and Schaal, B. A. 1991. No variation is detected in the chloroplast genome of Pinus torreyana. Canadian Journal of Forest Research 21:18321835.Google Scholar
Watts, W. A. 1970. The full-glacial vegetation of northwestern Georgia. Ecology 51:1733.Google Scholar
Watts, W. A. 1988. Europe. Pp. 155192 in Huntley and Webb 1988.Google Scholar
Watts, W. A., and Winter, T. C. 1966. Plant macrofossils from Kirchner Marsh, Minnesota—a paleoecological study. Geological Society of America Bulletin 77:13391360.Google Scholar
Weaver, J. E. 1954. North American prairie. Johnsen, Lincoln, Nebr.Google Scholar
Weaver, J. E., and Albertson, F. W. 1936. Effects of the great drought on the prairies of Iowa, Nebraska, and Kansas. Ecology 17:567639.Google Scholar
Weaver, J. E., and Albertson, F. W. 1944. Nature and degree of recovery of grassland from the great drought of 1933 to 1940. Ecological Monographs 14:393479.Google Scholar
Webb, S. L. 1987. Beech range extension and vegetation history: pollen stratigraphy of two Wisconsin lakes. Ecology 68:19932005.Google Scholar
Webb, T. III. 1987. The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio 69:177187.Google Scholar
Webb, T. III. 1988. Eastern North America. Pp. 385414 in Huntley and Webb 1988.Google Scholar
Webb, T. III. 1992. Past changes in vegetation and climate: lessons for the future. Pp. 5975 in Peters, R. L. and Lovejoy, T. E., eds. Global warming and biological diversity. Yale University Press, New Haven, Conn.Google Scholar
Webb, T. III. 1997. Spatial response of plant taxa to climate change: a palaeoecological perspective. Pp. 5571 in Huntley et al. 1997.Google Scholar
Webb, T. III., ed. 1998. Late Quaternary climates: data synthesis and model experiments. Quaternary Science Reviews 17:463688.Google Scholar
Webb, T. III, and Wigley, T. M. L. 1985. What past climate climates can indicate about a warmer world. Pp. 237258 in MacCracken, M. C. and Luther, F. M., eds. Projecting the climatic effects of increasing carbon dioxide. U.S. Department of Energy Report DOE/ER-0237. Washington, D.C. Google Scholar
Webb, T. III, Crowley, T. J., Frenzel, B., Gliemeroth, A.-K., Jouzel, J., Labeyrie, L., Prentice, I. C., Rind, D., Ruddiman, W. F., Sarntheim, M., and Zwick, A. 1993. Group report: use of paleoclimatic data as analogs for understanding future global changes. Pp. 5171 in Eddy, J. A. and Oeschger, H., eds. Global changes in the perspective of the past. Wiley, Chichester, England.Google Scholar
Weng, C., and Jackson, S. T. 1999. Late Glacial and Holocene vegetation history and paleoclimate of the Kaibab Plateau, Arizona. Palaeogeography, Palaeoclimatology, Palaeoecology 153:179201.Google Scholar
West, R. G. 1964. Inter-relations of ecology and Quaternary paleobotany. Journal of Ecology 52(Suppl.):4757.Google Scholar
West, R. G. 1980. Pleistocene forest history in East Anglia. New Phytologist 85:571622.Google Scholar
Whitlock, C. 1993. Postglacial vegetation and climate of Grand Teton and Yellowstone National Parks. Ecological Monographs 63:173198.Google Scholar
Whitlock, C., and Bartlein, P. J. 1997. Vegetation and climate change in northwest America during the past 125 kyr. Nature 388:5761.Google Scholar
Whittaker, R. H., Levin, S. A., and Root, R. B. 1973. Niche, habitat, and ecotope. American Naturalist 107:321338.Google Scholar
Wight, J. R., and Fisser, H. J. 1968. Juniperus osteosperma in northwestern Wyoming: their distribution and ecology. Science Monograph 6:131. Agricultural Experiment Station, University of Wyoming, Laramie.Google Scholar
Willis, K. J. 1994. The vegetational history of the Balkans. Quaternary Science Reviews 13:769788.Google Scholar
Woodhouse, C. A., and Overpeck, J. T. 1998. 2000 years of drought variability in the central United States. Bulletin of the American Meteorological Society 79:26932714.Google Scholar
Woods, K. D., and Davis, M. B. 1989. Paleoecology of range limits: beech in the Upper Peninsula of Michigan. Ecology 70:681696.Google Scholar
Wright, H. E. Jr., Kutzbach, J. E., Webb, T. III, Ruddiman, W. F., Street-Perrott, F. A., and Bartlein, P. J., eds. 1993. Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis.Google Scholar