Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T15:42:02.427Z Has data issue: false hasContentIssue false

Quantitative analysis of conodont tooth wear and damage as a test of ecological and functional hypotheses

Published online by Cambridge University Press:  08 February 2016

Mark A. Purnell*
Affiliation:
University of Leicester, Department of Geology, Leicester LE1 7RH, United Kingdom. E-mail: [email protected]
David Jones
Affiliation:
University of Leicester, Department of Geology, Leicester LE1 7RH, United Kingdom. E-mail: [email protected]
*
Corresponding author.

Abstract

Analysis of dental wear and damage is becoming an increasingly important tool in unraveling the trophic ecology of a wide range of vertebrates, and when applied to fossils it can provide evidence of both diet and feeding kinematics that is independent of morphological analysis. Conodonts have the best fossil record among vertebrates and their skeletal elements are known to exhibit surface wear and damage generated in vivo as a consequence of their function as teeth. We report the results of the first systematic survey and analysis of the frequency and extent of this wear and damage in conodonts (based on P1 elements from a range of Carboniferous genera). This has revealed that wear and damage are remarkably common, present in all conodont elements sampled. Multivariate analysis reveals that patterns of wear and damage differ significantly among different conodont taxa, and exploratory ANOVA and linear discriminant analyses show that wear and damage differ according to the position of taxa in an onshore-offshore gradient, and whether they are likely to have had a benthic or pelagic mode of life. The incidence of denticle tip spalling in particular is higher in more-offshore environments and in taxa likely to have had a pelagic mode of life. Aspects of the data also reflect the occlusal kinematics of the elements, providing a means of testing hypotheses of element function. Our results have wide-ranging implications for unlocking the fossil record of conodonts, by, for example, furnishing direct evidence of the diet-mediated processes that may have driven observed patterns of evolutionary change, and reducing the confounding effects of depth segregation when using conodonts in isotope-based paleotemperature studies.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aitchison, J. 1982 The statistical analysis of compositional data Journal of the Royal Statistical Society B 44:139177.Google Scholar
Aitchison, J. 1986. The statistical analysis of compositional data. Methuen, New York.CrossRefGoogle Scholar
Algeo, T. J., and Heckel, P. H. 2008. The Late Pennsylvanian Midcontinent Sea of North America: A review. Palaeogeography, Palaeoclimatology, Palaeoecology 268:205221.CrossRefGoogle Scholar
Austin, R. L.,and Davies, R. B. 1984. Problems of recognition and implications of Dinantian conodont biofacies in the British Isles. Pp. 195228in Clark 1984.CrossRefGoogle Scholar
Barrick, J. E., Heckel, P. H., and Boardman, D. R. 2008. Revision of the conodont Idiognathodus simulator (Ellison 1941), the marker species for the base of the Late Pennsylvanian global Gzhelian Stage. Micropaleontology 54:125137.CrossRefGoogle Scholar
Bassett, D., Macleod, K. G., Miller, J. E.,and Ethington, R. L. 2007. Oxygen isotopic composition of biogenic phosphate and the temperature of Early Ordovician seawater. Palaios 22:98103.CrossRefGoogle Scholar
Broadhead, T. W., and Driese, S. G. 1994. Experimental and natural abrasion of conodonts in marine and eolian environments. Palaios 9:546560.CrossRefGoogle Scholar
Brown, L. M., Rexroad, C. B., Eggert, D. L., and Horowitz, A. S. 1991. Conodont paleontology of the Providence Limestone Member of the Dugger Formation (Pennsylvanian, Desmoinesian) in the southern part of the Illinois Basin. Journal of Paleontology 65:945957.CrossRefGoogle Scholar
Buggisch, W., Joachimski, M. M., Sevastopulo, G., and Morrow, J. R. 2008. Mississippian ∂13Ccarb and conodont apatite ∂18O: their relation to the Late Palaeozoic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 268:273292.CrossRefGoogle Scholar
Chen, B., Joachimski, M. M., Sun, Y. D., Shen, S. Z., and Lai, X. L. 2011. Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections: climatic or sea-level signal? Palaeogeography, Palaeoclimatology, Palaeoecology 311:145153.CrossRefGoogle Scholar
Clark, D. L., ed. Conodont biofacies and provincialism. Geological Society of America Special Paper 196.Google Scholar
Croft, D. A., and Weinstein, D. 2008. The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeography, Palaeoclimatology, Palaeoecology 269103–114.Google Scholar
Donoghue, P. C. J., and Purnell, M. A. 1999a. Growth, function, and the conodont fossil record. Geology 27:251254.2.3.CO;2>CrossRefGoogle Scholar
Donoghue, P. C. J., and Purnell, M. A. 1999b. Mammal-like occlusion in conodonts. Paleobiology 25:5874.Google Scholar
Donoghue, P. C. J., Purnell, M. A., Aldridge, R. J., and Zhang, S. 2008. The interrelationships of complex conodonts (Vertebrata). Systematic Palaeontology 6:119153.CrossRefGoogle Scholar
Driese, S. G., Carr, T. R., and Clark, D. L. 1984. Quantitative analysis of Pennsylvanian shallow-water conodont biofacies, Utah and Colorado. Pp. 233250in Clark 1984.Google Scholar
Ellison, S. P. 1987. Examples of Devonian and Mississippian conodont lag concentrates from Texas. Pp. 7793inAustin, R. L., ed. Conodonts: investigative techniques and applications. Ellis Horwood Limited, Chichester, United Kingdom.Google Scholar
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.CrossRefGoogle ScholarPubMed
Fortelius, M., and Solounias, N. 2000. Functional characterisation of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 1301:136.2.0.CO;2>CrossRefGoogle Scholar
Gordon, K. D. 1988. A review of methodology and quantification in dental microwear analyses. Scanning Microscopy 2:11391147.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: Article 4.Google Scholar
Hass, W. H. 1941. Morphology of conodonts. Journal of Paleontology 15:7181.Google Scholar
Heckel, P. H. 1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North-America. AAPG Bulletin 61:10451068.Google Scholar
Heckel, P. H., and Baesemann, J. F. 1975. Environmental distribution of conodont distribution in Upper Pennsylvanian (Missourian) megacyclothems in Eastern Kansas. AAPG Bulletin 59:486509.Google Scholar
Huddle, J. W. 1934. Conodonts from the New Albany Shale of Indiana. Bulletins of American Paleontology 21 (72).Google Scholar
Jeppsson, L. 1971. Element arrangement in conodont apparatuses of Hindeodella type and in similar forms. Lethaia 4:101123.CrossRefGoogle Scholar
Jeppsson, L. 1979. Conodont element function. Lethaia 12:153171.CrossRefGoogle Scholar
Joachimski, M. M., and Buggisch, W. 2002. Conodont apatite ∂18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30:711714.2.0.CO;2>CrossRefGoogle Scholar
Joachimski, M. M., von Bitter, P. H., and Buggisch, W. 2006. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology 34:277280.CrossRefGoogle Scholar
Jones, D., Evans, A. R., Siu, K. K. W., Rayfield, E. J., and Donoghue, P. C. J. 2012. The sharpest tools in the box? Quantitative analysis of conodont element functional morphology. Proceedings of the Royal Society of London B 279:28492854.Google ScholarPubMed
Jones, D. O., and Purnell, M. A. 2007. A new semi-automatic morphometric protocol for conodonts and a preliminary taxonomic application. InMacLeod, N., ed. Automated taxon identification in systematics: theory, approaches, and applications. Systematics Association Special Volume 74:239259. CRC Press, Boca Raton, Fla.Google Scholar
Kaiser, T. M., and Solounias, N. 2003. Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25:321345.Google Scholar
Klapper, G., and Barrick, J. E. 1978. Conodont ecology: pelagic versus benthic. Lethaia 11:1523.CrossRefGoogle Scholar
Krumhardt, A. P., Harris, A. G., and Watts, K. F. 1996. Lithostratigraphy, microlithofacies, and conodont biostratigraphy and biofacies of the Wahoo Limestone (Carboniferous), Eastern Sadlerochit Mountains, Northeast Brooks Range, Alaska. U.S. Government Printing Office, Washington, D.C.CrossRefGoogle Scholar
Lucas, P. W. 2004. Dental functional morphology: how teeth work. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
MacLeod, N. 2006. Minding your R's and Q's, Part 1. Palaeontological Association Newsletter 61.Google Scholar
Malinky, J. M., and Heckel, P. H. 1998. Paleoecology and taphonomy of faunal assemblages in gray “core” (offshore) shales in midcontinent Pennsylvanian cyclothems. Palaios 13:311334.CrossRefGoogle Scholar
Merrill, G. K., and von Bitter, P. H. 1976. Revision of conodont biofacies nomenclature and interpretation of environmental controls on Pennsylvanian rocks of eastern and central North America.CrossRefGoogle Scholar
Merrill, G. K., and von Bitter, P. H. 1984. Facies and frequencies among Pennsylvanian conodonts: apparatuses and abundances. Pp. 251261in Clark 1984.CrossRefGoogle Scholar
Nicoll, R. S. 1987. Form and function of the Pa element in the conodont animal. Pp. 7790inAldridge, R. J., ed. Palaeobiology of conodonts. Ellis Horwood, Chichester, United Kingdom.Google Scholar
Pierce, R. W., and Langenheim, R. L. 1970. Surface patterns on selected Mississippian conodonts. Geological Society of America Bulletin 81:32253236.CrossRefGoogle Scholar
Pohler, S. M. L., and Barnes, C. R. 1990. Conceptual models in conodont paleoecology. Courier Forschungsinstitut Senckenberg 118:409440.Google Scholar
Purnell, M. A. 1989. Dinantian shallow shelf conodonts of the Northumberland trough. Ph.D. dissertation. University of Newcastle Upon Tyne, Newcastle Upon Tyne, United Kingdom.Google Scholar
Purnell, M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates. Nature 374:798800.CrossRefGoogle Scholar
Purnell, M. A., and Donoghue, P. C. J. 1997. Architecture and functional morphology of the skeletal apparatus of ozarkodinid conodonts. Philosophical Transactions of the Royal Society of London B 352:15451564.CrossRefGoogle Scholar
Purnell, M. A., and Donoghue, P. C. J. 2005. Between death and data: biases in interpretation of the fossil record of conodonts. InPurnell, M. A. and Donoghue, P. C. J., eds. Conodont biology and phylogeny: interpreting the fossil record. Special Papers in Palaeontology 73:725.Google Scholar
Purnell, M. A., and von Bitter, P. H. 1992. Blade-shaped conodont elements functioned as cutting teeth. Nature 359:629631.CrossRefGoogle Scholar
Purnell, M. A., Donoghue, P. C. J., and Aldridge, R. J. 2000. Orientation and anatomical notation in conodonts. Journal of Paleontology 74:113122.2.0.CO;2>CrossRefGoogle Scholar
Purnell, M. A., Hart, P. J. B., Baines, D. C., and Bell, M. A. 2006. Quantitative analysis of dental microwear in threespine stickleback: a new approach to analysis of trophic ecology in aquatic vertebrates. Journal of Animal Ecology 75:967977.CrossRefGoogle ScholarPubMed
Purnell, M. A., Bell, M. A., Baines, D. C., Hart, P. J. B., and Travis, M. P. 2007. Correlated evolution and dietary change in fossil stickleback. Science 317:1887.CrossRefGoogle ScholarPubMed
Purnell, M. A., Seehausen, O., and Galis, F. 2012. Quantitative 3D microtextural analysis of tooth wear as a tool for dietary discrimination in fishes. Journal of the Royal Society Interface.CrossRefGoogle Scholar
Rhodes, F. H. T. 1954. The zoological affinities of conodonts. Biological Reviews 29:419452.CrossRefGoogle Scholar
Riley, N. J. 1990. Stratigraphy of the Worston Shale Group (Dinantian), Craven Basin, north-west England. Proceedings of the Yorkshire Geological Society 48:163187.CrossRefGoogle Scholar
Sandberg, C. A., and Gutschick, R. C. 1984. Distribution, microfauna, and source-rock potential of Mississippian Delle phosphatic member of Woodman Formation and equivalents, Utah and adjacent states. Pp. 135178inWoodward, J., Meissner, F. F., and Clayton, J. L., eds. Hydrocarbon source rocks of the Greater Rocky Mountain region. Rocky Mountain Association of Geologists, Denver, Colo.Google Scholar
Sandberg, C. A., and Ziegler, W. 1979. Taxonomy and biofacies of important conodonts of Late Devonian styriacus-Zone, United States and Germany. Geologica et Palaeontologica 13:173212.Google Scholar
Schubert, B. W., and Ungar, P. S. 2005. Wear facets and enamel spalling in tyrannosaurid dinosaurs. Acta Palaeontologica Polonica 50:9399.Google Scholar
Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., and Walker, A. 2005. Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature 436:693695.CrossRefGoogle ScholarPubMed
Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., and Walker, A. 2006. Dental microwear texture analysis: technical considerations. Journal of Human Evolution 51:339349.CrossRefGoogle ScholarPubMed
Teaford, M. F. 1988. Scanning electron-microscope diagnosis of wear patterns versus artifacts on fossil teeth. Scanning Microscopy 2:11671175.Google ScholarPubMed
Thewissen, J. G. M., Sensor, J. D., Clementz, M. T., and Bajpai, S. 2011. Evolution of dental wear and diet during the origin of whales. Paleobiology 37:655669.CrossRefGoogle Scholar
Turner, S., Burrow, C. J., Schultze, H. P., Blieck, A., Reif, W. E., Rexroad, C. B., Bultynck, P., and Nowlan, G. S. 2010. False teeth: conodont-vertebrate phylogenetic relationships revisited. Geodiversitas 32:545594.CrossRefGoogle Scholar
Van Valkenburgh, B. 2009. Costs of carnivory: tooth fracture in Pleistocene and Recent carnivorans. Biological Journal of the Linnean Society 96:6881.CrossRefGoogle Scholar
von Bitter, P. H. 1972. Environmental control of conodont distribution in the Shawnee Group (Upper Pennsylvanian) of eastern Kansas. University of Kansas Paleontological Contributions 59:1105Google Scholar
von Bitter, P. H., and Purnell, M. A. 2005. An experimental investigation of post-depositional taphonomic bias in conodonts. InPurnell, M. A. and Donoghue, P. C. J., eds. Conodont biology and phylogeny: interpreting the fossil record. Special Papers in Palaeontology 73:3956.Google Scholar
von Bitter, P. H., Sandberg, C. A., and Orchard, M. J. 1986. Phylogeny, speciation, and palaeoecology of the Early Carboniferous (Mississippian) conodont genus Mestognathus. Royal Ontario Museum, Life Sciences Contributions 143:1115.Google Scholar
Walker, A. C., Hoeck, H. N., and Perez, L. 1978. Microwear of mammal teeth as an indicator of diet. Science 201:808810.CrossRefGoogle ScholarPubMed
Weddige, K. 1990. Pathological conodonts. Courier Forschungsinstitut Senckenberg 118:563589.Google Scholar
Wenzel, B., Lecuyer, C., and Joachimski, M. M. 2000. Comparing oxygen isotope records of Silurian calcite and phosphate: ∂18O compositions of brachiopods and conodonts. Geochimica et Cosmochimica Acta 64:18591872.CrossRefGoogle Scholar
Williams, V. S., Barrett, P. M., and Purnell, M. A. 2009. Quantitative analysis of dental microwear in hadrosaurid dinosaurs, and the implications for hypotheses of jaw mechanics and feeding. Proceedings of the National Academy of Sciences USA 106:1119411199.CrossRefGoogle ScholarPubMed
Zhang, S. X., and Barnes, C. R. 2002. Paleoecology of Llandovery conodonts, Anticosti Island, Québec. Palaeogeography Palaeoclimatology Palaeoecology 180:3355.CrossRefGoogle Scholar
Zigaite, Z., Joachimski, M. M., Lehnert, O., and Brazauskas, A. 2010. δ18O composition of conodont apatite indicates climatic cooling during the Middle Pridoli. Palaeogeography, Palaeoclimatology, Palaeoecology 294:242247.CrossRefGoogle Scholar