Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T00:35:17.221Z Has data issue: false hasContentIssue false

Predation and survival among inadunate crinoids

Published online by Cambridge University Press:  08 February 2016

N. Gary Lane*
Affiliation:
Department of Geology, Indiana University, Bloomington, Indiana 47405

Abstract

The proposition is presented that the large thecae of many Paleozoic crinoids housed gonads, unlike modern crinoids that have the gonads on the arms or pinnules. Early in their history, inadunate crinoid gonads migrated into a voluminous anal sac, effectively separating them from other vital organs. Excision of the sac by predatory fishes and cephalopods would have been less traumatic than an attack on the theca, and the sac could be more readily regenerated. The pores and slits between plates on inadunate sacs are interpreted as gonopores. Some anal sacs may also have served as brood chambers. The traditional explanation of the sac as a special respiratory structure is discounted.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brawn, W. M. et al. 1968. Caloric contents of benthic invertebrates in a bay in Novia Scotia. J. Fish. Res. Bd. Can. 25:18031811.CrossRefGoogle Scholar
Breimer, A. 1978. General morphology of Recent crinoids. In: Moore, R. C. et al., eds. Treatise on Invertebrate Paleontology. Part T, Echinodermata 2. 1:T9T58.Google Scholar
Farmanfarmaian, A. 1966. The respiratory physiology of echinoderms. Pp. 245267. In: Boolootian, R. A. ed. Physiology of Echinoderms. Wiley; New York.Google Scholar
Giese, A. C. et al. 1966. Respiration during the reproductive cycle in the sea urchin, Strongylocentrotus purpuratus. Biol. Bull. pp. 192201.Google Scholar
Gislén, T. 1924. Echinoderm studies. Zool. Bidrag fran Uppsala, 9:1330.Google Scholar
Hall, J. 1852. Paleontology of New York. Vol. 2. Nat. Hist. New York. Pt. 6, 362 pp.Google Scholar
Haugh, B. N. 1975. Digestive and coelomic systems of Mississippian camerate crinoids. J. Paleontol. 49:472492.Google Scholar
Hyman, L. H. 1955. The Invertebrates. Vol. 4; Echinodermata. The coelomate Bilateria. 763 pp. McGraw-Hill; New York.Google Scholar
LaBarbera, M. 1982. Metabolic rates of suspension feeding crinoids and ophiuroids (Echinodermata) in a unidirectional laminar flow. Comp. Biochem. Physiol. 71A:303307.CrossRefGoogle Scholar
Lane, N. G. 1975. The anal sac of Aesiocrinus, a Pennsylvanian inadunate crinoid. J. Paleontol. 49:638645.Google Scholar
Laudon, L. R. 1957. Crinoids. Pp. 961971. In: Ladd, H. S. ed. Treatise on marine ecology and paleoecology. Geol. Soc. Am. Mem. 67(2).Google Scholar
Lowe, E. F. 1979. Relations between biochemical and caloric composition and reproductive cycle in Asterias vulgaris (Echinodermata) from the Gulf of Maine. Diss. Absts, int. B, 40(1):3031.Google Scholar
Lucas, J. S. et al. 1979. Saponins in eggs and larvae of Acanthaster planci (L.) (Asteroidea) as chemical defenses against planktivorous fish. J. Exp. Marine Biol. 40:155165.CrossRefGoogle Scholar
Meyer, D. L. and Ausich, W. I. 1983. Biotic interactions among Recent and fossil crinoids. Pp. 378420. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.Google Scholar
Meyer, D. L. and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology. 3:7482.CrossRefGoogle Scholar
Montouri, A. 1913. Les process oxydatifs chez les animaux marins en rapport avec la loi de superficie. Arch. Ital. Biol. Tor. 59:213234.Google Scholar
Moore, R. C. and Plummer, F. B. 1940. Crinoids from the Upper Carboniferous and Permian strata in Texas. Texas Univ. Bull. 3945. 468 pp.Google Scholar
Nichols, D. et al. 1982. An annual reproductive and nutritional cycle in the European sea urchin Echinus esculentus in the Plymouth area. Pp. 451457. In: Lawrence, J. M., ed. Internat. Echin. Conf., Tampa Bay. Balkema; Rotterdam.Google Scholar
Randall, J. E. 1967. Food habits of reef fishes of the West Indies. Stud. Trop. Oceanogr. 5:665847.Google Scholar
Schopf, T. J. M., Farmanfarmaian, A., and Gooch, J. L. 1971. Oxygen consumption rates and their paleontologic significance. J. Paleontol. 45:247252.Google Scholar
Sieverts, H. 1934. Neues über Cupressocrinus Goldf. Naturhist. Ver. Rheinl. Westfalens, Sitzungsber. 26(1932):27(1933):89102.Google Scholar
Signor, P. W. and Brett, C. E. 1983. Impact of the mid-Paleozoic radiation of durophagous predators: evidence from brachipods, nautiloids and crinoids. Abst. 96th Ann. Mt. Geol. Soc. Am. Abstr. P.688.Google Scholar
Springer, . 1926. Unusual forms of fossil crinoids. Proc. U.S. Natl. Mus. Proc. 67(9):1137.CrossRefGoogle Scholar
Strimple, H. L. 1977. Aphelecrinus (Crinoidea:Inadunata) from Chesterian rocks of Alabama. Oklahoma Geol. Notes. 37(1):2325.Google Scholar
Strimple, H. L. and Beane, B. H. 1966. Reproduction of lost arms on a crinoid from LaGrand, Iowa. Oklahoma Geol. Notes. 26(2):3536.Google Scholar
Trautschold, H. 1882. Die Kalkbrüche vom Mjatschkowa. Pt. 2: Eine monographie des oberen Bergkalks. Soc. Impér. Nat. Moscou, Nouv. Mém., 14(liv. 3):139154.Google Scholar
Ulrich, E. O. 1925. New classification of the “Heterocrinidae.” Pp. 82104. In: Foerste, A. F., ed. Upper Ordovician faunas of Ontario and Quebec. Mem. Can. Geol. Surv. 138.Google Scholar
Van Sant, J. F. and Lane, N. G. 1964. Crawfordsville (Indiana) crinoid studies. Contr. Univ. Kansas Paleontol. Echinodermata, Art. 7. 136 pp.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology. 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1983. Shell-breaking predation through time. Pp. 649664. In: Tevesz, M. J. S. and McCall, P. L., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Wachsmuth, C. and Springer, F. 1891. The perisomic plates of the crinoids. Proc. Acad. Nat. Sci. Philadelphia. 1890:345392.Google Scholar
Whitaker, D. M. 1933. On the rate of oxygen consumption by fertilized and unfertilized eggs. IV. Chaetopterus and Arbacia punctulata. J. Gener. Physiol. 16:475494.CrossRefGoogle ScholarPubMed
Yakovlev, N. N. 1952. Samoregulirovaine i formoobrazovanie u morskikh liliy. Akad. Nauk SSSR, Doklady N.S. 86:827828.Google Scholar